Properties

Label 2.2.8.24b2.5
Base \(\Q_{2}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(24\)
Galois group $\GL(2,\mathbb{Z}/4)$ (as 16T193)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{8} + 2 ( x^{2} + x + 1 )^{7} + 2 x ( x^{2} + x + 1 )^{5} + 2 ( x^{2} + x + 1 )^{2} + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $24$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[\frac{4}{3}, \frac{4}{3}, 2]$
Visible Swan slopes:$[\frac{1}{3},\frac{1}{3},1]$
Means:$\langle\frac{1}{6}, \frac{1}{4}, \frac{5}{8}\rangle$
Rams:$(\frac{1}{3}, \frac{1}{3}, 3)$
Jump set:$[1, 2, 5, 13]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.2.2.4a2.2, 2.1.4.4a1.1, 2.2.4.8a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + 2 t x^{7} + 2 t x^{5} + 2 x^{2} + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + 1$,$z + t$
Associated inertia:$1$,$1$
Indices of inseparability:$[5, 2, 2, 0]$

Invariants of the Galois closure

Galois degree: $96$
Galois group: $\GL(2,\mathbb{Z}/4)$ (as 16T193)
Inertia group: Intransitive group isomorphic to $C_2^2\times A_4$
Wild inertia group: $C_2^4$
Galois unramified degree: $2$
Galois tame degree: $3$
Galois Artin slopes: $[\frac{4}{3}, \frac{4}{3}, 2, 2]$
Galois Swan slopes: $[\frac{1}{3},\frac{1}{3},1,1]$
Galois mean slope: $1.7916666666666667$
Galois splitting model: $x^{16} - 110 x^{14} - 116 x^{13} + 3298 x^{12} + 4168 x^{11} - 37682 x^{10} - 56900 x^{9} + 153976 x^{8} + 298400 x^{7} - 40010 x^{6} - 316060 x^{5} - 147234 x^{4} + 41144 x^{3} + 46842 x^{2} + 11988 x + 999$ Copy content Toggle raw display