Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $193$ | |
| Group : | $\GL(2,Z/4)$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,14,8,15)(2,13,7,16)(3,9,5,12)(4,10,6,11), (1,8,4)(2,7,3)(9,14,12,10,13,11)(15,16) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 8: $D_{4}$ 12: $D_{6}$ 24: $S_4$, $(C_6\times C_2):C_2$ 48: $S_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 8: $S_4$
Low degree siblings
12T49 x 2, 12T50, 12T52, 16T186, 24T153, 24T154, 24T155 x 2, 24T156, 24T157, 24T158, 24T159, 24T165, 24T166, 32T392Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1 $ | $8$ | $3$ | $( 3, 5, 7)( 4, 6, 8)( 9,13,16)(10,14,15)$ |
| $ 6, 3, 3, 2, 1, 1 $ | $8$ | $6$ | $( 3, 5, 7)( 4, 6, 8)( 9,14,16,10,13,15)(11,12)$ |
| $ 6, 3, 3, 2, 1, 1 $ | $8$ | $6$ | $( 3, 7, 5)( 4, 8, 6)( 9,15,13,10,16,14)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 6, 6, 2, 2 $ | $8$ | $6$ | $( 1, 2)( 3, 6, 7, 4, 5, 8)( 9,14,16,10,13,15)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,15)(10,16)(11,13)(12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $6$ | $2$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,16)(10,15)(11,14)(12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $3$ | $2$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,16)(10,15)(11,14)(12,13)$ |
| $ 4, 4, 4, 4 $ | $12$ | $4$ | $( 1, 9, 5,14)( 2,10, 6,13)( 3,11, 8,16)( 4,12, 7,15)$ |
| $ 4, 4, 4, 4 $ | $12$ | $4$ | $( 1, 9, 6,13)( 2,10, 5,14)( 3,11, 7,15)( 4,12, 8,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $12$ | $2$ | $( 1, 9)( 2,10)( 3,14)( 4,13)( 5,15)( 6,16)( 7,11)( 8,12)$ |
| $ 4, 4, 4, 4 $ | $12$ | $4$ | $( 1, 9, 2,10)( 3,14, 4,13)( 5,15, 6,16)( 7,11, 8,12)$ |
Group invariants
| Order: | $96=2^{5} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [96, 195] |
| Character table: |
2 5 4 2 2 2 5 2 5 4 5 3 3 3 3
3 1 1 1 1 1 1 1 . . . . . . .
1a 2a 3a 6a 6b 2b 6c 2c 2d 2e 4a 4b 2f 4c
2P 1a 1a 3a 3a 3a 1a 3a 1a 1a 1a 2c 2e 1a 2b
3P 1a 2a 1a 2a 2a 2b 2b 2c 2d 2e 4a 4b 2f 4c
5P 1a 2a 3a 6b 6a 2b 6c 2c 2d 2e 4a 4b 2f 4c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 -1 1 1 1 -1 1 -1 1 1 -1
X.3 1 -1 1 -1 -1 1 1 1 -1 1 1 -1 -1 1
X.4 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
X.5 2 -2 -1 1 1 2 -1 2 -2 2 . . . .
X.6 2 2 -1 -1 -1 2 -1 2 2 2 . . . .
X.7 2 . 2 . . -2 -2 -2 . 2 . . . .
X.8 2 . -1 A -A -2 1 -2 . 2 . . . .
X.9 2 . -1 -A A -2 1 -2 . 2 . . . .
X.10 3 -3 . . . 3 . -1 1 -1 -1 1 -1 1
X.11 3 -3 . . . 3 . -1 1 -1 1 -1 1 -1
X.12 3 3 . . . 3 . -1 -1 -1 -1 -1 1 1
X.13 3 3 . . . 3 . -1 -1 -1 1 1 -1 -1
X.14 6 . . . . -6 . 2 . -2 . . . .
A = -E(3)+E(3)^2
= -Sqrt(-3) = -i3
|