Show commands: Magma
Group invariants
| Abstract group: | $\GL(2,\mathbb{Z}/4)$ |
| |
| Order: | $96=2^{5} \cdot 3$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $16$ |
| |
| Transitive number $t$: | $193$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,14,8,15)(2,13,7,16)(3,9,5,12)(4,10,6,11)$, $(1,8,4)(2,7,3)(9,14,12,10,13,11)(15,16)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $8$: $D_{4}$ $12$: $D_{6}$ $24$: $S_4$, $(C_6\times C_2):C_2$ $48$: $S_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 8: $S_4$
Low degree siblings
12T49 x 2, 12T50, 12T52, 16T186, 24T153, 24T154, 24T155 x 2, 24T156, 24T157, 24T158, 24T159, 24T165, 24T166, 32T392Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| 2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| 2C | $2^{8}$ | $3$ | $2$ | $8$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,16)(10,15)(11,14)(12,13)$ |
| 2D | $2^{8}$ | $3$ | $2$ | $8$ | $( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 9,14)(10,13)(11,16)(12,15)$ |
| 2E | $2^{8}$ | $6$ | $2$ | $8$ | $( 1, 8)( 2, 7)( 3, 5)( 4, 6)( 9,11)(10,12)(13,15)(14,16)$ |
| 2F | $2^{8}$ | $12$ | $2$ | $8$ | $( 1,12)( 2,11)( 3,14)( 4,13)( 5,10)( 6, 9)( 7,15)( 8,16)$ |
| 3A | $3^{4},1^{4}$ | $8$ | $3$ | $8$ | $( 1, 8, 4)( 2, 7, 3)( 9,13,12)(10,14,11)$ |
| 4A | $4^{4}$ | $12$ | $4$ | $12$ | $( 1,11, 2,12)( 3,16, 4,15)( 5,13, 6,14)( 7, 9, 8,10)$ |
| 4B | $4^{4}$ | $12$ | $4$ | $12$ | $( 1,10, 4,15)( 2, 9, 3,16)( 5,12, 7,13)( 6,11, 8,14)$ |
| 4C | $4^{4}$ | $12$ | $4$ | $12$ | $( 1,10, 5,13)( 2, 9, 6,14)( 3,12, 8,15)( 4,11, 7,16)$ |
| 6A | $6^{2},2^{2}$ | $8$ | $6$ | $12$ | $( 1, 3, 8, 2, 4, 7)( 5, 6)( 9,11,13,10,12,14)(15,16)$ |
| 6B1 | $6,3^{2},2,1^{2}$ | $8$ | $6$ | $10$ | $( 1, 8, 4)( 2, 7, 3)( 9,14,12,10,13,11)(15,16)$ |
| 6B-1 | $6,3^{2},2,1^{2}$ | $8$ | $6$ | $10$ | $( 1, 7, 4, 2, 8, 3)( 5, 6)( 9,13,12)(10,14,11)$ |
Malle's constant $a(G)$: $1/4$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 2F | 3A | 4A | 4B | 4C | 6A | 6B1 | 6B-1 | ||
| Size | 1 | 1 | 2 | 3 | 3 | 6 | 12 | 8 | 12 | 12 | 12 | 8 | 8 | 8 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 3A | 2A | 2C | 2D | 3A | 3A | 3A | |
| 3 P | 1A | 2A | 2B | 2C | 2D | 2E | 2F | 1A | 4A | 4B | 4C | 2A | 2B | 2B | |
| Type | |||||||||||||||
| 96.195.1a | R | ||||||||||||||
| 96.195.1b | R | ||||||||||||||
| 96.195.1c | R | ||||||||||||||
| 96.195.1d | R | ||||||||||||||
| 96.195.2a | R | ||||||||||||||
| 96.195.2b | R | ||||||||||||||
| 96.195.2c | R | ||||||||||||||
| 96.195.2d1 | C | ||||||||||||||
| 96.195.2d2 | C | ||||||||||||||
| 96.195.3a | R | ||||||||||||||
| 96.195.3b | R | ||||||||||||||
| 96.195.3c | R | ||||||||||||||
| 96.195.3d | R | ||||||||||||||
| 96.195.6a | R |
Regular extensions
Data not computed