Normalized defining polynomial
\( x^{16} + 3x^{14} + 5x^{12} + 3x^{10} - 11x^{8} + 12x^{6} + 80x^{4} + 192x^{2} + 256 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(92236816000000000000\)
\(\medspace = 2^{16}\cdot 5^{12}\cdot 7^{8}\)
|
| |
Root discriminant: | \(17.69\) |
| |
Galois root discriminant: | $2\cdot 5^{3/4}7^{1/2}\approx 17.693205386531027$ | ||
Ramified primes: |
\(2\), \(5\), \(7\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_2^2\times C_4$ |
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(140=2^{2}\cdot 5\cdot 7\) | ||
Dirichlet character group: | $\lbrace$$\chi_{140}(1,·)$, $\chi_{140}(69,·)$, $\chi_{140}(71,·)$, $\chi_{140}(139,·)$, $\chi_{140}(13,·)$, $\chi_{140}(83,·)$, $\chi_{140}(27,·)$, $\chi_{140}(29,·)$, $\chi_{140}(97,·)$, $\chi_{140}(99,·)$, $\chi_{140}(41,·)$, $\chi_{140}(43,·)$, $\chi_{140}(111,·)$, $\chi_{140}(113,·)$, $\chi_{140}(57,·)$, $\chi_{140}(127,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | unavailable$^{128}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{44}a^{10}+\frac{1}{4}a^{8}-\frac{1}{4}a^{6}+\frac{1}{4}a^{4}-\frac{1}{4}a^{2}+\frac{3}{11}$, $\frac{1}{88}a^{11}+\frac{1}{8}a^{9}-\frac{1}{8}a^{7}+\frac{1}{8}a^{5}-\frac{1}{8}a^{3}+\frac{3}{22}a$, $\frac{1}{176}a^{12}-\frac{1}{176}a^{10}-\frac{5}{16}a^{8}-\frac{3}{16}a^{6}-\frac{5}{16}a^{4}+\frac{7}{22}a^{2}+\frac{2}{11}$, $\frac{1}{352}a^{13}-\frac{1}{352}a^{11}-\frac{5}{32}a^{9}-\frac{3}{32}a^{7}+\frac{11}{32}a^{5}-\frac{15}{44}a^{3}-\frac{9}{22}a$, $\frac{1}{704}a^{14}-\frac{1}{704}a^{12}-\frac{7}{704}a^{10}-\frac{19}{64}a^{8}+\frac{27}{64}a^{6}+\frac{7}{88}a^{4}+\frac{1}{22}a^{2}-\frac{2}{11}$, $\frac{1}{1408}a^{15}-\frac{1}{1408}a^{13}-\frac{7}{1408}a^{11}-\frac{19}{128}a^{9}+\frac{27}{128}a^{7}-\frac{81}{176}a^{5}-\frac{21}{44}a^{3}+\frac{9}{22}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
| |
Relative class number: | $1$ |
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -\frac{1}{88} a^{13} - \frac{1}{88} a^{3} \)
(order $20$)
|
| |
Fundamental units: |
$\frac{1}{44}a^{12}+\frac{45}{44}a^{2}+1$, $\frac{17}{1408}a^{15}+\frac{3}{704}a^{14}+\frac{51}{1408}a^{13}+\frac{9}{704}a^{12}+\frac{85}{1408}a^{11}+\frac{15}{704}a^{10}-\frac{7}{128}a^{9}-\frac{5}{64}a^{8}-\frac{17}{128}a^{7}-\frac{3}{64}a^{6}+\frac{51}{352}a^{5}+\frac{9}{176}a^{4}+\frac{85}{88}a^{3}+\frac{15}{44}a^{2}+\frac{51}{22}a+\frac{9}{11}$, $\frac{1}{352}a^{15}-\frac{1}{88}a^{13}+\frac{1}{44}a^{12}+\frac{89}{352}a^{5}-\frac{1}{88}a^{3}+\frac{45}{44}a^{2}+1$, $\frac{13}{1408}a^{15}+\frac{19}{1408}a^{13}+\frac{21}{1408}a^{11}-\frac{7}{128}a^{9}-\frac{17}{128}a^{7}-\frac{19}{176}a^{5}-\frac{5}{88}a^{3}+\frac{3}{11}a$, $\frac{5}{1408}a^{15}-\frac{1}{1408}a^{13}+\frac{9}{1408}a^{11}-\frac{3}{128}a^{9}+\frac{11}{128}a^{7}-\frac{29}{352}a^{5}+\frac{35}{88}a^{3}-\frac{5}{11}a$, $\frac{9}{1408}a^{15}-\frac{3}{704}a^{14}-\frac{17}{1408}a^{13}-\frac{25}{704}a^{12}+\frac{9}{1408}a^{11}-\frac{15}{704}a^{10}-\frac{3}{128}a^{9}+\frac{5}{64}a^{8}+\frac{11}{128}a^{7}+\frac{3}{64}a^{6}+\frac{15}{88}a^{5}-\frac{9}{176}a^{4}-\frac{27}{44}a^{3}-\frac{15}{11}a^{2}+\frac{6}{11}a-\frac{9}{11}$, $\frac{3}{176}a^{15}-\frac{21}{704}a^{14}-\frac{35}{704}a^{12}+\frac{1}{22}a^{11}-\frac{21}{704}a^{10}+\frac{7}{64}a^{8}+\frac{17}{64}a^{6}+\frac{91}{176}a^{5}-\frac{35}{44}a^{4}-\frac{21}{11}a^{2}+\frac{23}{22}a-\frac{39}{11}$
|
| |
Regulator: | \( 11381.1188025 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 11381.1188025 \cdot 1}{20\cdot\sqrt{92236816000000000000}}\cr\approx \mathstrut & 0.143926828828 \end{aligned}\]
Galois group
$C_2^2\times C_4$ (as 16T2):
An abelian group of order 16 |
The 16 conjugacy class representatives for $C_4\times C_2^2$ |
Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{4}$ | R | R | ${\href{/padicField/11.2.0.1}{2} }^{8}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{8}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{8}$ | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.4.2.8a1.1 | $x^{8} + 2 x^{5} + 4 x^{4} + x^{2} + 4 x + 5$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $$[2]^{4}$$ |
2.4.2.8a1.1 | $x^{8} + 2 x^{5} + 4 x^{4} + x^{2} + 4 x + 5$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $$[2]^{4}$$ | |
\(5\)
| 5.2.4.6a1.2 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 128 x + 21$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |
5.2.4.6a1.2 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 128 x + 21$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ | |
\(7\)
| 7.4.2.4a1.2 | $x^{8} + 10 x^{6} + 8 x^{5} + 31 x^{4} + 40 x^{3} + 46 x^{2} + 24 x + 16$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
7.4.2.4a1.2 | $x^{8} + 10 x^{6} + 8 x^{5} + 31 x^{4} + 40 x^{3} + 46 x^{2} + 24 x + 16$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |