Properties

 Label 140.139 Modulus $140$ Conductor $140$ Order $2$ Real yes Primitive yes Minimal yes Parity even

Related objects

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(140, base_ring=CyclotomicField(2))

M = H._module

chi = DirichletCharacter(H, M([1,1,1]))

pari: [g,chi] = znchar(Mod(139,140))

Kronecker symbol representation

sage: kronecker_character(140)

pari: znchartokronecker(g,chi)

$$\displaystyle\left(\frac{140}{\bullet}\right)$$

Basic properties

 Modulus: $$140$$ Conductor: $$140$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$2$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: yes Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

Galois orbit 140.c

sage: chi.galois_orbit()

order = charorder(g,chi)

[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

Related number fields

 Field of values: $$\Q$$ Fixed field: $$\Q(\sqrt{35})$$

Values on generators

$$(71,57,101)$$ → $$(-1,-1,-1)$$

First values

 $$a$$ $$-1$$ $$1$$ $$3$$ $$9$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$27$$ $$29$$ $$31$$ $$\chi_{ 140 }(139, a)$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$-1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$1$$
sage: chi.jacobi_sum(n)

$$\chi_{ 140 }(139,a) \;$$ at $$\;a =$$ e.g. 2

Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 140 }(139,·) )\;$$ at $$\;a =$$ e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 140 }(139,·),\chi_{ 140 }(n,·)) \;$$ for $$\; n =$$ e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 140 }(139,·)) \;$$ at $$\; a,b =$$ e.g. 1,2