Normalized defining polynomial
\( x^{16} - 8 x^{15} + 26 x^{14} - 42 x^{13} + 33 x^{12} - 16 x^{11} + 21 x^{10} - 6 x^{9} - 59 x^{8} + \cdots + 31 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(3444736000000000000\)
\(\medspace = 2^{24}\cdot 5^{12}\cdot 29^{2}\)
|
| |
Root discriminant: | \(14.41\) |
| |
Galois root discriminant: | $2^{3/2}5^{3/4}29^{1/2}\approx 50.92974429446663$ | ||
Ramified primes: |
\(2\), \(5\), \(29\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_4$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | 8.0.64000000.2 |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{279589}a^{14}-\frac{7}{279589}a^{13}-\frac{64064}{279589}a^{12}+\frac{104886}{279589}a^{11}+\frac{33355}{279589}a^{10}-\frac{56639}{279589}a^{9}-\frac{87178}{279589}a^{8}-\frac{3695}{9019}a^{7}+\frac{45361}{279589}a^{6}+\frac{103086}{279589}a^{5}+\frac{120887}{279589}a^{4}-\frac{89908}{279589}a^{3}-\frac{1363}{9641}a^{2}+\frac{44292}{279589}a-\frac{750}{9019}$, $\frac{1}{11463149}a^{15}+\frac{13}{11463149}a^{14}+\frac{215385}{11463149}a^{13}+\frac{3017441}{11463149}a^{12}+\frac{5486143}{11463149}a^{11}+\frac{610461}{11463149}a^{10}-\frac{381191}{11463149}a^{9}-\frac{4933584}{11463149}a^{8}+\frac{2507474}{11463149}a^{7}+\frac{4085785}{11463149}a^{6}-\frac{4527529}{11463149}a^{5}-\frac{747647}{11463149}a^{4}-\frac{1558098}{11463149}a^{3}+\frac{2049642}{11463149}a^{2}+\frac{1142179}{11463149}a+\frac{57152}{369779}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( \frac{2548}{279589} a^{14} - \frac{17836}{279589} a^{13} + \frac{44904}{279589} a^{12} - \frac{37556}{279589} a^{11} - \frac{6516}{279589} a^{10} - \frac{48248}{279589} a^{9} + \frac{143711}{279589} a^{8} + \frac{976}{9019} a^{7} - \frac{170018}{279589} a^{6} - \frac{150532}{279589} a^{5} + \frac{192587}{279589} a^{4} + \frac{177396}{279589} a^{3} - \frac{2164}{9641} a^{2} - \frac{97940}{279589} a + \frac{1028}{9019} \)
(order $10$)
|
| |
Fundamental units: |
$\frac{890}{279589}a^{14}-\frac{6230}{279589}a^{13}+\frac{19196}{279589}a^{12}-\frac{34186}{279589}a^{11}+\frac{49516}{279589}a^{10}-\frac{82690}{279589}a^{9}+\frac{137322}{279589}a^{8}-\frac{5634}{9019}a^{7}+\frac{110474}{279589}a^{6}+\frac{41348}{279589}a^{5}-\frac{52335}{279589}a^{4}-\frac{55666}{279589}a^{3}-\frac{7945}{9641}a^{2}+\frac{277420}{279589}a-\frac{9113}{9019}$, $\frac{231383}{11463149}a^{15}-\frac{1572500}{11463149}a^{14}+\frac{3792658}{11463149}a^{13}-\frac{2809835}{11463149}a^{12}-\frac{2050848}{11463149}a^{11}+\frac{348412}{11463149}a^{10}+\frac{7576315}{11463149}a^{9}-\frac{3033809}{11463149}a^{8}-\frac{6329619}{11463149}a^{7}-\frac{1702818}{11463149}a^{6}+\frac{7793619}{11463149}a^{5}+\frac{4623330}{11463149}a^{4}-\frac{4738526}{11463149}a^{3}+\frac{2532585}{11463149}a^{2}-\frac{5861504}{11463149}a+\frac{76958}{369779}$, $\frac{201276}{11463149}a^{15}-\frac{1261110}{11463149}a^{14}+\frac{2419330}{11463149}a^{13}+\frac{837091}{11463149}a^{12}-\frac{8467461}{11463149}a^{11}+\frac{232601}{369779}a^{10}+\frac{4721872}{11463149}a^{9}-\frac{3615676}{11463149}a^{8}-\frac{8367390}{11463149}a^{7}-\frac{1548322}{11463149}a^{6}+\frac{21048098}{11463149}a^{5}-\frac{18829867}{11463149}a^{4}+\frac{8418541}{11463149}a^{3}+\frac{7940547}{11463149}a^{2}-\frac{10334289}{11463149}a+\frac{202485}{369779}$, $\frac{458778}{11463149}a^{15}-\frac{3346125}{11463149}a^{14}+\frac{9411078}{11463149}a^{13}-\frac{11059359}{11463149}a^{12}+\frac{1486029}{11463149}a^{11}+\frac{3568004}{11463149}a^{10}+\frac{6066118}{11463149}a^{9}+\frac{1646593}{11463149}a^{8}-\frac{31688934}{11463149}a^{7}+\frac{29193578}{11463149}a^{6}+\frac{214858}{11463149}a^{5}-\frac{143266}{395281}a^{4}+\frac{862832}{11463149}a^{3}-\frac{10036686}{11463149}a^{2}+\frac{20809661}{11463149}a-\frac{66683}{369779}$, $\frac{313883}{11463149}a^{15}-\frac{2422285}{11463149}a^{14}+\frac{7167054}{11463149}a^{13}-\frac{8477635}{11463149}a^{12}-\frac{1685213}{11463149}a^{11}+\frac{12806686}{11463149}a^{10}-\frac{9415714}{11463149}a^{9}+\frac{10967382}{11463149}a^{8}-\frac{34131587}{11463149}a^{7}+\frac{1360598}{395281}a^{6}-\frac{6779761}{11463149}a^{5}-\frac{14285966}{11463149}a^{4}+\frac{10294816}{11463149}a^{3}-\frac{13431989}{11463149}a^{2}+\frac{26171066}{11463149}a-\frac{359421}{369779}$, $\frac{318991}{11463149}a^{15}-\frac{2577937}{11463149}a^{14}+\frac{8445722}{11463149}a^{13}-\frac{428927}{369779}a^{12}+\frac{8150227}{11463149}a^{11}+\frac{118171}{11463149}a^{10}+\frac{5614468}{11463149}a^{9}-\frac{8102030}{11463149}a^{8}-\frac{20151790}{11463149}a^{7}+\frac{38678548}{11463149}a^{6}-\frac{11182623}{11463149}a^{5}-\frac{1563790}{11463149}a^{4}-\frac{8702221}{11463149}a^{3}-\frac{1817163}{11463149}a^{2}+\frac{14292898}{11463149}a-\frac{410965}{369779}$, $\frac{113778}{11463149}a^{15}-\frac{1101180}{11463149}a^{14}+\frac{4460877}{11463149}a^{13}-\frac{9027365}{11463149}a^{12}+\frac{7757163}{11463149}a^{11}+\frac{1428189}{11463149}a^{10}-\frac{4471666}{11463149}a^{9}-\frac{2342615}{11463149}a^{8}-\frac{5533126}{11463149}a^{7}+\frac{24325787}{11463149}a^{6}-\frac{14945837}{11463149}a^{5}-\frac{9468125}{11463149}a^{4}+\frac{9651680}{11463149}a^{3}-\frac{9954644}{11463149}a^{2}+\frac{9798880}{11463149}a+\frac{243534}{369779}$
|
| |
Regulator: | \( 1674.03195575 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 1674.03195575 \cdot 1}{10\cdot\sqrt{3444736000000000000}}\cr\approx \mathstrut & 0.219091091504 \end{aligned}\]
Galois group
$(C_2^3\times C_4):C_4$ (as 16T292):
A solvable group of order 128 |
The 26 conjugacy class representatives for $(C_2^3\times C_4):C_4$ |
Character table for $(C_2^3\times C_4):C_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}) \), \(\Q(\zeta_{5})\), 4.0.8000.2, \(\Q(\sqrt{2}, \sqrt{5})\), 8.0.64000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 16.0.707281000000000000.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{12}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{6}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.8.2.24a1.41 | $x^{16} + 2 x^{12} + 2 x^{11} + 2 x^{10} + 7 x^{8} + 2 x^{7} + 3 x^{6} + 2 x^{5} + 7 x^{4} + 6 x^{3} + 6 x^{2} + 7$ | $2$ | $8$ | $24$ | $C_8\times C_2$ | $$[3]^{8}$$ |
\(5\)
| 5.4.4.12a1.4 | $x^{16} + 16 x^{14} + 16 x^{13} + 104 x^{12} + 192 x^{11} + 448 x^{10} + 864 x^{9} + 1432 x^{8} + 2048 x^{7} + 2624 x^{6} + 2752 x^{5} + 2208 x^{4} + 1280 x^{3} + 512 x^{2} + 128 x + 21$ | $4$ | $4$ | $12$ | $C_4^2$ | $$[\ ]_{4}^{4}$$ |
\(29\)
| 29.4.1.0a1.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
29.4.1.0a1.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
29.2.2.2a1.1 | $x^{4} + 48 x^{3} + 580 x^{2} + 125 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
29.4.1.0a1.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |