Properties

Label 5.4.4.12a1.4
Base \(\Q_{5}\)
Degree \(16\)
e \(4\)
f \(4\)
c \(12\)
Galois group $C_4^2$ (as 16T4)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{4} + 4 x^{2} + 4 x + 2 )^{4} + 5$ Copy content Toggle raw display

Invariants

Base field: $\Q_{5}$
Degree $d$: $16$
Ramification index $e$: $4$
Residue field degree $f$: $4$
Discriminant exponent $c$: $12$
Discriminant root field: $\Q_{5}$
Root number: $-1$
$\Aut(K/\Q_{5})$ $=$$\Gal(K/\Q_{5})$: $C_4^2$
This field is Galois and abelian over $\Q_{5}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:$[1]$
Roots of unity:$3120 = (5^{ 4 } - 1) \cdot 5$

Intermediate fields

$\Q_{5}(\sqrt{2})$, $\Q_{5}(\sqrt{5})$, $\Q_{5}(\sqrt{5\cdot 2})$, 5.4.1.0a1.1, 5.2.2.2a1.2, 5.2.2.2a1.1, 5.1.4.3a1.4, 5.1.4.3a1.1, 5.1.4.3a1.2, 5.1.4.3a1.3, 5.4.2.4a1.2, 5.2.4.6a1.2, 5.2.4.6a1.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:5.4.1.0a1.1 $\cong \Q_{5}(t)$ where $t$ is a root of \( x^{4} + 4 x^{2} + 4 x + 2 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{4} + 5 \) $\ \in\Q_{5}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^3 + 4 z^2 + z + 4$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $16$
Galois group: $C_4^2$ (as 16T4)
Inertia group: Intransitive group isomorphic to $C_4$
Wild inertia group: $C_1$
Galois unramified degree: $4$
Galois tame degree: $4$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.75$
Galois splitting model:not computed