/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^16 - 8*x^15 + 26*x^14 - 42*x^13 + 33*x^12 - 16*x^11 + 21*x^10 - 6*x^9 - 59*x^8 + 96*x^7 - 69*x^6 + 40*x^5 - 10*x^4 - 22*x^3 + 57*x^2 - 42*x + 31, 16, 292, [0, 8], 3444736000000000000, [2, 5, 29], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^10, a^11, a^12, a^13, 1/279589*a^14 - 7/279589*a^13 - 64064/279589*a^12 + 104886/279589*a^11 + 33355/279589*a^10 - 56639/279589*a^9 - 87178/279589*a^8 - 3695/9019*a^7 + 45361/279589*a^6 + 103086/279589*a^5 + 120887/279589*a^4 - 89908/279589*a^3 - 1363/9641*a^2 + 44292/279589*a - 750/9019, 1/11463149*a^15 + 13/11463149*a^14 + 215385/11463149*a^13 + 3017441/11463149*a^12 + 5486143/11463149*a^11 + 610461/11463149*a^10 - 381191/11463149*a^9 - 4933584/11463149*a^8 + 2507474/11463149*a^7 + 4085785/11463149*a^6 - 4527529/11463149*a^5 - 747647/11463149*a^4 - 1558098/11463149*a^3 + 2049642/11463149*a^2 + 1142179/11463149*a + 57152/369779], 0, 1, [], 0, [ (890)/(279589)*a^(14) - (6230)/(279589)*a^(13) + (19196)/(279589)*a^(12) - (34186)/(279589)*a^(11) + (49516)/(279589)*a^(10) - (82690)/(279589)*a^(9) + (137322)/(279589)*a^(8) - (5634)/(9019)*a^(7) + (110474)/(279589)*a^(6) + (41348)/(279589)*a^(5) - (52335)/(279589)*a^(4) - (55666)/(279589)*a^(3) - (7945)/(9641)*a^(2) + (277420)/(279589)*a - (9113)/(9019) , (231383)/(11463149)*a^(15) - (1572500)/(11463149)*a^(14) + (3792658)/(11463149)*a^(13) - (2809835)/(11463149)*a^(12) - (2050848)/(11463149)*a^(11) + (348412)/(11463149)*a^(10) + (7576315)/(11463149)*a^(9) - (3033809)/(11463149)*a^(8) - (6329619)/(11463149)*a^(7) - (1702818)/(11463149)*a^(6) + (7793619)/(11463149)*a^(5) + (4623330)/(11463149)*a^(4) - (4738526)/(11463149)*a^(3) + (2532585)/(11463149)*a^(2) - (5861504)/(11463149)*a + (76958)/(369779) , (201276)/(11463149)*a^(15) - (1261110)/(11463149)*a^(14) + (2419330)/(11463149)*a^(13) + (837091)/(11463149)*a^(12) - (8467461)/(11463149)*a^(11) + (232601)/(369779)*a^(10) + (4721872)/(11463149)*a^(9) - (3615676)/(11463149)*a^(8) - (8367390)/(11463149)*a^(7) - (1548322)/(11463149)*a^(6) + (21048098)/(11463149)*a^(5) - (18829867)/(11463149)*a^(4) + (8418541)/(11463149)*a^(3) + (7940547)/(11463149)*a^(2) - (10334289)/(11463149)*a + (202485)/(369779) , (458778)/(11463149)*a^(15) - (3346125)/(11463149)*a^(14) + (9411078)/(11463149)*a^(13) - (11059359)/(11463149)*a^(12) + (1486029)/(11463149)*a^(11) + (3568004)/(11463149)*a^(10) + (6066118)/(11463149)*a^(9) + (1646593)/(11463149)*a^(8) - (31688934)/(11463149)*a^(7) + (29193578)/(11463149)*a^(6) + (214858)/(11463149)*a^(5) - (143266)/(395281)*a^(4) + (862832)/(11463149)*a^(3) - (10036686)/(11463149)*a^(2) + (20809661)/(11463149)*a - (66683)/(369779) , (313883)/(11463149)*a^(15) - (2422285)/(11463149)*a^(14) + (7167054)/(11463149)*a^(13) - (8477635)/(11463149)*a^(12) - (1685213)/(11463149)*a^(11) + (12806686)/(11463149)*a^(10) - (9415714)/(11463149)*a^(9) + (10967382)/(11463149)*a^(8) - (34131587)/(11463149)*a^(7) + (1360598)/(395281)*a^(6) - (6779761)/(11463149)*a^(5) - (14285966)/(11463149)*a^(4) + (10294816)/(11463149)*a^(3) - (13431989)/(11463149)*a^(2) + (26171066)/(11463149)*a - (359421)/(369779) , (318991)/(11463149)*a^(15) - (2577937)/(11463149)*a^(14) + (8445722)/(11463149)*a^(13) - (428927)/(369779)*a^(12) + (8150227)/(11463149)*a^(11) + (118171)/(11463149)*a^(10) + (5614468)/(11463149)*a^(9) - (8102030)/(11463149)*a^(8) - (20151790)/(11463149)*a^(7) + (38678548)/(11463149)*a^(6) - (11182623)/(11463149)*a^(5) - (1563790)/(11463149)*a^(4) - (8702221)/(11463149)*a^(3) - (1817163)/(11463149)*a^(2) + (14292898)/(11463149)*a - (410965)/(369779) , (113778)/(11463149)*a^(15) - (1101180)/(11463149)*a^(14) + (4460877)/(11463149)*a^(13) - (9027365)/(11463149)*a^(12) + (7757163)/(11463149)*a^(11) + (1428189)/(11463149)*a^(10) - (4471666)/(11463149)*a^(9) - (2342615)/(11463149)*a^(8) - (5533126)/(11463149)*a^(7) + (24325787)/(11463149)*a^(6) - (14945837)/(11463149)*a^(5) - (9468125)/(11463149)*a^(4) + (9651680)/(11463149)*a^(3) - (9954644)/(11463149)*a^(2) + (9798880)/(11463149)*a + (243534)/(369779) ], 1674.03195575, [[x^2 - x - 1, 1], [x^2 - 10, 1], [x^2 - 2, 1], [x^4 - x^3 + x^2 - x + 1, 1], [x^4 + 10*x^2 + 20, 1], [x^4 - 6*x^2 + 4, 1], [x^8 + 2*x^6 + 4*x^4 + 8*x^2 + 16, 1]]]