Show commands: Magma
Group invariants
Abstract group: | $(C_2^3\times C_4):C_4$ |
| |
Order: | $128=2^{7}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $4$ |
|
Group action invariants
Degree $n$: | $16$ |
| |
Transitive number $t$: | $292$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $4$ |
| |
Generators: | $(1,8,2,7)(3,5,4,6)(9,14,10,13)(11,15,12,16)$, $(1,9,6,15)(2,10,5,16)(3,11,8,13)(4,12,7,14)$, $(1,10,5,15,2,9,6,16)(3,12,7,13,4,11,8,14)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_4$ x 4, $C_2^2$ x 7 $8$: $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $C_4\times C_2^2$ $32$: $C_2^3 : C_4 $ x 2, $C_2 \times (C_2^2:C_4)$ $64$: 16T76 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 8: $C_4\times C_2$
Low degree siblings
16T243 x 2, 16T280 x 2, 16T292, 32T553, 32T554, 32T555 x 2, 32T651, 32T652, 32T674 x 2, 32T675, 32T676 x 2, 32T677, 32T1137 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 9,10)(11,12)(13,14)(15,16)$ |
2C | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $( 5, 6)( 7, 8)( 9,10)(11,12)$ |
2D | $2^{6},1^{4}$ | $4$ | $2$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)$ |
2E | $2^{2},1^{12}$ | $4$ | $2$ | $2$ | $(13,14)(15,16)$ |
2F | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 8)( 2, 7)( 3, 5)( 4, 6)( 9,14)(10,13)(11,15)(12,16)$ |
2G | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,16)(10,15)(11,14)(12,13)$ |
4A1 | $4^{4}$ | $1$ | $4$ | $12$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)$ |
4A-1 | $4^{4}$ | $1$ | $4$ | $12$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,12,10,11)(13,15,14,16)$ |
4B | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,15,14,16)$ |
4C | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,12,10,11)(13,16,14,15)$ |
4D | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 7, 2, 8)( 3, 6, 4, 5)( 9,14,10,13)(11,15,12,16)$ |
4E | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,15,10,16)(11,13,12,14)$ |
4F1 | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,12,10,11)(13,16,14,15)$ |
4F-1 | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)$ |
4G | $4^{2},2^{4}$ | $8$ | $4$ | $10$ | $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,16,10,15)(11,14,12,13)$ |
4H | $4^{2},2^{4}$ | $8$ | $4$ | $10$ | $( 1, 8, 2, 7)( 3, 5, 4, 6)( 9,14)(10,13)(11,15)(12,16)$ |
4I1 | $4^{4}$ | $8$ | $4$ | $12$ | $( 1,16, 5, 9)( 2,15, 6,10)( 3,14, 7,11)( 4,13, 8,12)$ |
4I-1 | $4^{4}$ | $8$ | $4$ | $12$ | $( 1, 9, 5,16)( 2,10, 6,15)( 3,11, 7,14)( 4,12, 8,13)$ |
4J1 | $4^{4}$ | $8$ | $4$ | $12$ | $( 1,14, 6,12)( 2,13, 5,11)( 3,15, 8, 9)( 4,16, 7,10)$ |
4J-1 | $4^{4}$ | $8$ | $4$ | $12$ | $( 1,11, 6,13)( 2,12, 5,14)( 3,10, 8,16)( 4, 9, 7,15)$ |
8A1 | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,10, 5,16, 2, 9, 6,15)( 3,12, 7,14, 4,11, 8,13)$ |
8A-1 | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,16, 6, 9, 2,15, 5,10)( 3,14, 8,11, 4,13, 7,12)$ |
8B1 | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,12, 6,13, 2,11, 5,14)( 3, 9, 8,16, 4,10, 7,15)$ |
8B-1 | $8^{2}$ | $8$ | $8$ | $14$ | $( 1,14, 5,12, 2,13, 6,11)( 3,15, 7, 9, 4,16, 8,10)$ |
Malle's constant $a(G)$: $1/2$
Character table
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A1 | 4A-1 | 4B | 4C | 4D | 4E | 4F1 | 4F-1 | 4G | 4H | 4I1 | 4I-1 | 4J1 | 4J-1 | 8A1 | 8A-1 | 8B1 | 8B-1 | ||
Size | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 4 | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | 2A | 2A | 2A | 2A | 2B | 2B | 2G | 2G | 2G | 2G | 4E | 4E | 4E | 4E | |
Type | |||||||||||||||||||||||||||
128.852.1a | R | ||||||||||||||||||||||||||
128.852.1b | R | ||||||||||||||||||||||||||
128.852.1c | R | ||||||||||||||||||||||||||
128.852.1d | R | ||||||||||||||||||||||||||
128.852.1e | R | ||||||||||||||||||||||||||
128.852.1f | R | ||||||||||||||||||||||||||
128.852.1g | R | ||||||||||||||||||||||||||
128.852.1h | R | ||||||||||||||||||||||||||
128.852.1i1 | C | ||||||||||||||||||||||||||
128.852.1i2 | C | ||||||||||||||||||||||||||
128.852.1j1 | C | ||||||||||||||||||||||||||
128.852.1j2 | C | ||||||||||||||||||||||||||
128.852.1k1 | C | ||||||||||||||||||||||||||
128.852.1k2 | C | ||||||||||||||||||||||||||
128.852.1l1 | C | ||||||||||||||||||||||||||
128.852.1l2 | C | ||||||||||||||||||||||||||
128.852.2a | R | ||||||||||||||||||||||||||
128.852.2b | R | ||||||||||||||||||||||||||
128.852.2c | R | ||||||||||||||||||||||||||
128.852.2d | R | ||||||||||||||||||||||||||
128.852.4a | R | ||||||||||||||||||||||||||
128.852.4b | R | ||||||||||||||||||||||||||
128.852.4c1 | C | ||||||||||||||||||||||||||
128.852.4c2 | C | ||||||||||||||||||||||||||
128.852.4d1 | C | ||||||||||||||||||||||||||
128.852.4d2 | C |
Regular extensions
Data not computed