Normalized defining polynomial
\( x^{16} - 80x^{10} + 324x^{8} - 256x^{6} + 128x^{4} - 32x^{2} + 4 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(3442605166011971360784384\)
\(\medspace = 2^{72}\cdot 3^{6}\)
|
| |
| Root discriminant: | \(34.16\) |
| |
| Galois root discriminant: | $2^{1269/256}3^{1/2}\approx 53.79918827448669$ | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-2}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{8}a^{8}+\frac{1}{4}$, $\frac{1}{16}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}+\frac{1}{8}a$, $\frac{1}{16}a^{10}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}+\frac{1}{8}a^{2}$, $\frac{1}{16}a^{11}-\frac{1}{2}a^{7}+\frac{1}{8}a^{3}$, $\frac{1}{16}a^{12}+\frac{1}{8}a^{4}$, $\frac{1}{16}a^{13}+\frac{1}{8}a^{5}$, $\frac{1}{5360}a^{14}-\frac{83}{2680}a^{12}+\frac{43}{2680}a^{10}-\frac{143}{2680}a^{8}+\frac{157}{536}a^{6}+\frac{441}{1340}a^{4}+\frac{191}{1340}a^{2}-\frac{559}{1340}$, $\frac{1}{5360}a^{15}-\frac{83}{2680}a^{13}+\frac{43}{2680}a^{11}+\frac{49}{5360}a^{9}-\frac{111}{536}a^{7}-\frac{1}{2}a^{6}-\frac{229}{1340}a^{5}+\frac{191}{1340}a^{3}-\frac{783}{2680}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{3093}{2680}a^{15}-\frac{1909}{5360}a^{13}-\frac{351}{5360}a^{11}+\frac{61857}{670}a^{9}-\frac{92579}{268}a^{7}+\frac{496563}{2680}a^{5}-\frac{207327}{2680}a^{3}+\frac{2371}{335}a$, $\frac{2269}{2680}a^{15}-\frac{563}{5360}a^{13}-\frac{677}{5360}a^{11}-\frac{181609}{2680}a^{9}+\frac{75771}{268}a^{7}-\frac{644939}{2680}a^{5}+\frac{259851}{2680}a^{3}-\frac{27257}{1340}a$, $\frac{1753}{2680}a^{15}-\frac{1909}{5360}a^{13}-\frac{351}{5360}a^{11}+\frac{35057}{670}a^{9}-\frac{49163}{268}a^{7}+\frac{153523}{2680}a^{5}-\frac{35807}{2680}a^{3}-\frac{2989}{335}a$, $\frac{9}{4}a^{15}-\frac{2937}{2680}a^{14}+\frac{1}{2}a^{13}-\frac{771}{5360}a^{12}+\frac{1}{16}a^{11}+\frac{1}{335}a^{10}-180a^{9}+\frac{58743}{670}a^{8}+689a^{7}-\frac{92073}{268}a^{6}-419a^{5}+\frac{626357}{2680}a^{4}+\frac{1441}{8}a^{3}-\frac{34426}{335}a^{2}-24a+\frac{6004}{335}$, $\frac{161}{335}a^{15}+\frac{1493}{5360}a^{14}-\frac{257}{2680}a^{13}-\frac{273}{5360}a^{12}-\frac{101}{5360}a^{11}-\frac{121}{2680}a^{10}+\frac{12881}{335}a^{9}-\frac{29867}{1340}a^{8}-\frac{19837}{134}a^{7}+\frac{50553}{536}a^{6}+\frac{125259}{1340}a^{5}-\frac{225849}{2680}a^{4}-\frac{116717}{2680}a^{3}+\frac{46643}{1340}a^{2}+\frac{2886}{335}a-\frac{4741}{670}$, $\frac{667}{5360}a^{15}+\frac{569}{2680}a^{14}+\frac{249}{2680}a^{13}+\frac{367}{5360}a^{12}+\frac{77}{5360}a^{11}+\frac{3}{335}a^{10}-\frac{13353}{1340}a^{9}-\frac{11371}{670}a^{8}+\frac{17619}{536}a^{7}+\frac{16973}{268}a^{6}-\frac{4003}{1340}a^{5}-\frac{88049}{2680}a^{4}-\frac{6171}{2680}a^{3}+\frac{3922}{335}a^{2}+\frac{2011}{670}a-\frac{78}{335}$, $\frac{511}{2680}a^{15}-\frac{11}{268}a^{14}-\frac{477}{5360}a^{13}-\frac{33}{536}a^{12}-\frac{213}{5360}a^{11}-\frac{2}{67}a^{10}-\frac{10239}{670}a^{9}+\frac{217}{67}a^{8}+\frac{18453}{268}a^{7}-\frac{1131}{134}a^{6}-\frac{199741}{2680}a^{5}-\frac{1917}{268}a^{4}+\frac{98619}{2680}a^{3}+\frac{378}{67}a^{2}-\frac{3297}{335}a-\frac{216}{67}$
|
| |
| Regulator: | \( 935765.5883943298 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 935765.5883943298 \cdot 1}{2\cdot\sqrt{3442605166011971360784384}}\cr\approx \mathstrut & 0.612537121969456 \end{aligned}\]
Galois group
$(C_2^2\times C_4^2):D_8$ (as 16T1276):
| A solvable group of order 1024 |
| The 43 conjugacy class representatives for $(C_2^2\times C_4^2):D_8$ |
| Character table for $(C_2^2\times C_4^2):D_8$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 4.0.6144.1, 8.0.28991029248.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{3}{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.16.72d1.976 | $x^{16} + 16 x^{15} + 8 x^{14} + 16 x^{13} + 24 x^{12} + 16 x^{11} + 16 x^{10} + 16 x^{9} + 8 x^{4} + 32 x^{3} + 16 x^{2} + 2$ | $16$ | $1$ | $72$ | 16T1276 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$$ |
|
\(3\)
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |