Show commands: Magma
Group invariants
Abstract group: | $(C_2^2\times C_4^2):D_8$ |
| |
Order: | $1024=2^{10}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $6$ |
|
Group action invariants
Degree $n$: | $16$ |
| |
Transitive number $t$: | $1276$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,16,2,15)(3,14,4,13)(5,6)(7,8)(9,12)(10,11)$, $(1,6)(2,5)(3,8,4,7)(9,13,12,15,10,14,11,16)$, $(1,10,3,11)(2,9,4,12)(5,15,7,14)(6,16,8,13)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 6, $C_2^3$ $16$: $D_{8}$ x 2, $D_4\times C_2$ x 3 $32$: $Z_8 : Z_8^\times$, $C_2^2 \wr C_2$, 16T29 $64$: $(C_4^2 : C_2):C_2$, $(((C_4 \times C_2): C_2):C_2):C_2$, 16T126 $128$: $C_2 \wr C_2\wr C_2$ x 2, 16T409 $256$: 16T689 $512$: 16T962 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $C_2 \wr C_2\wr C_2$
Low degree siblings
16T1271 x 8, 16T1276 x 15, 16T1282 x 8, 32T36786 x 8, 32T36787 x 8, 32T36788 x 8, 32T36789 x 8, 32T36790 x 4, 32T36791 x 8, 32T36792 x 16, 32T36793 x 4, 32T36794 x 8, 32T36795 x 8, 32T36796 x 8, 32T36797 x 4, 32T36798 x 8, 32T36799 x 4, 32T36800 x 8, 32T36801 x 8, 32T36802 x 4, 32T36803 x 8, 32T36804 x 4, 32T36826 x 8, 32T36827 x 8, 32T36828 x 8, 32T36829 x 8, 32T36830 x 8, 32T36831 x 8, 32T36862 x 16, 32T36863 x 8, 32T36864 x 4, 32T36865 x 8, 32T36866 x 8, 32T36867 x 4, 32T36868 x 8, 32T56379 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 5, 6)( 7, 8)( 9,10)(11,12)$ |
2C | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $( 1, 3)( 2, 4)(13,16)(14,15)$ |
2D | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,16)(14,15)$ |
2E | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,11)(10,12)(13,16)(14,15)$ |
2F | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)$ |
2G | $2^{4},1^{8}$ | $4$ | $2$ | $4$ | $( 9,10)(11,12)(13,14)(15,16)$ |
2H | $2^{6},1^{4}$ | $8$ | $2$ | $6$ | $( 1, 2)( 3, 4)( 5, 7)( 6, 8)( 9,11)(10,12)$ |
2I | $2^{4},1^{8}$ | $16$ | $2$ | $4$ | $( 1, 3)( 2, 4)( 5, 6)( 9,10)$ |
2J | $2^{6},1^{4}$ | $16$ | $2$ | $6$ | $( 1, 3)( 2, 4)( 5,12)( 6,11)( 7,10)( 8, 9)$ |
2K | $2^{8}$ | $16$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5, 9)( 6,10)( 7,12)( 8,11)(13,15)(14,16)$ |
2L | $2^{6},1^{4}$ | $16$ | $2$ | $6$ | $( 5, 9)( 6,10)( 7,12)( 8,11)(13,14)(15,16)$ |
2M | $2^{6},1^{4}$ | $16$ | $2$ | $6$ | $( 1, 3)( 2, 4)( 7, 8)( 9,10)(13,14)(15,16)$ |
2N | $2^{8}$ | $16$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5,10)( 6, 9)( 7,12)( 8,11)(13,14)(15,16)$ |
2O | $2^{8}$ | $16$ | $2$ | $8$ | $( 1,16)( 2,15)( 3,13)( 4,14)( 5, 9)( 6,10)( 7,12)( 8,11)$ |
2P | $2^{8}$ | $32$ | $2$ | $8$ | $( 1,11)( 2,12)( 3, 9)( 4,10)( 5,13)( 6,14)( 7,15)( 8,16)$ |
4A | $4^{2},1^{8}$ | $8$ | $4$ | $6$ | $( 5,10, 6, 9)( 7,11, 8,12)$ |
4B | $4^{2},2^{4}$ | $8$ | $4$ | $10$ | $( 1, 3)( 2, 4)( 5,10, 6, 9)( 7,11, 8,12)(13,16)(14,15)$ |
4C | $4^{2},2^{4}$ | $8$ | $4$ | $10$ | $( 1, 3)( 2, 4)( 5,12, 6,11)( 7, 9, 8,10)(13,16)(14,15)$ |
4D | $4^{2},2^{4}$ | $8$ | $4$ | $10$ | $( 1, 2)( 3, 4)( 5,10, 6, 9)( 7,11, 8,12)(13,14)(15,16)$ |
4E | $4^{4}$ | $8$ | $4$ | $12$ | $( 1,14, 2,13)( 3,15, 4,16)( 5, 9, 6,10)( 7,12, 8,11)$ |
4F | $4^{4}$ | $8$ | $4$ | $12$ | $( 1,16, 2,15)( 3,13, 4,14)( 5,11, 6,12)( 7,10, 8, 9)$ |
4G | $4^{2},2^{2},1^{4}$ | $16$ | $4$ | $8$ | $( 1, 3)( 2, 4)( 5, 8, 6, 7)( 9,11,10,12)$ |
4H | $4^{2},2^{2},1^{4}$ | $16$ | $4$ | $8$ | $( 1, 3)( 2, 4)( 5, 9, 6,10)( 7,11, 8,12)$ |
4I | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1, 3)( 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,14)(15,16)$ |
4J | $4^{2},2^{4}$ | $16$ | $4$ | $10$ | $( 1, 3)( 2, 4)( 5,11, 6,12)( 7, 9, 8,10)(13,14)(15,16)$ |
4K | $4^{2},2^{2},1^{4}$ | $32$ | $4$ | $8$ | $( 1,13, 3,16)( 2,14, 4,15)( 7, 8)( 9,10)$ |
4L | $4^{4}$ | $32$ | $4$ | $12$ | $( 1,13, 3,16)( 2,14, 4,15)( 5, 7, 6, 8)( 9,11,10,12)$ |
4M | $4^{2},2^{4}$ | $32$ | $4$ | $10$ | $( 1,13, 3,16)( 2,14, 4,15)( 5,10)( 6, 9)( 7,12)( 8,11)$ |
4N | $4^{4}$ | $32$ | $4$ | $12$ | $( 1,13, 3,16)( 2,14, 4,15)( 5,11, 6,12)( 7, 9, 8,10)$ |
4O | $4^{4}$ | $32$ | $4$ | $12$ | $( 1, 9, 3,11)( 2,10, 4,12)( 5,13, 8,16)( 6,14, 7,15)$ |
4P | $4^{4}$ | $32$ | $4$ | $12$ | $( 1,11, 4,10)( 2,12, 3, 9)( 5,15, 7,13)( 6,16, 8,14)$ |
4Q | $4^{4}$ | $32$ | $4$ | $12$ | $( 1, 9, 2,10)( 3,11, 4,12)( 5,15, 6,16)( 7,13, 8,14)$ |
4R | $4^{4}$ | $32$ | $4$ | $12$ | $( 1,15, 3,13)( 2,16, 4,14)( 5,10, 7,12)( 6, 9, 8,11)$ |
4S | $4^{2},2^{2},1^{4}$ | $32$ | $4$ | $8$ | $( 3, 4)( 5, 6)( 9,11,10,12)(13,15,14,16)$ |
4T | $4^{3},2,1^{2}$ | $64$ | $4$ | $10$ | $( 1, 4, 2, 3)( 5,11, 7, 9)( 6,12, 8,10)(15,16)$ |
8A | $8^{2}$ | $64$ | $8$ | $14$ | $( 1, 9,14, 6, 2,10,13, 5)( 3,12,15, 8, 4,11,16, 7)$ |
8B | $8^{2}$ | $64$ | $8$ | $14$ | $( 1, 7,16,10, 2, 8,15, 9)( 3, 5,13,11, 4, 6,14,12)$ |
8C1 | $8^{2}$ | $64$ | $8$ | $14$ | $( 1, 9,15, 8, 3,11,13, 6)( 2,10,16, 7, 4,12,14, 5)$ |
8C3 | $8^{2}$ | $64$ | $8$ | $14$ | $( 1, 8,13, 9, 3, 6,15,11)( 2, 7,14,10, 4, 5,16,12)$ |
8D1 | $8,4,2^{2}$ | $64$ | $8$ | $12$ | $( 1, 7)( 2, 8)( 3, 5, 4, 6)( 9,16,11,13,10,15,12,14)$ |
8D3 | $8,4,2^{2}$ | $64$ | $8$ | $12$ | $( 1, 7)( 2, 8)( 3, 6, 4, 5)( 9,13,12,16,10,14,11,15)$ |
Malle's constant $a(G)$: $1/4$
Character table
43 x 43 character table
Regular extensions
Data not computed