Normalized defining polynomial
\( x^{16} + 8x^{14} + 56x^{12} + 192x^{10} + 284x^{8} + 112x^{6} - 112x^{4} - 64x^{2} + 36 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(860651291502992840196096\)
\(\medspace = 2^{70}\cdot 3^{6}\)
|
| |
| Root discriminant: | \(31.33\) |
| |
| Galois root discriminant: | $2^{1269/256}3^{1/2}\approx 53.79918827448669$ | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-2}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{8}a^{8}-\frac{1}{2}a^{4}-\frac{1}{4}$, $\frac{1}{8}a^{9}-\frac{1}{2}a^{5}-\frac{1}{4}a$, $\frac{1}{8}a^{10}-\frac{1}{2}a^{6}-\frac{1}{4}a^{2}$, $\frac{1}{8}a^{11}-\frac{1}{2}a^{7}-\frac{1}{4}a^{3}$, $\frac{1}{16}a^{12}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}+\frac{3}{8}a^{4}-\frac{1}{2}$, $\frac{1}{48}a^{13}+\frac{1}{24}a^{9}+\frac{1}{6}a^{7}-\frac{1}{24}a^{5}-\frac{1}{3}a^{3}+\frac{1}{12}a$, $\frac{1}{4656}a^{14}-\frac{27}{1552}a^{12}-\frac{5}{2328}a^{10}-\frac{41}{2328}a^{8}-\frac{1}{2}a^{7}+\frac{299}{2328}a^{6}+\frac{217}{2328}a^{4}+\frac{355}{1164}a^{2}+\frac{133}{388}$, $\frac{1}{4656}a^{15}+\frac{1}{291}a^{13}-\frac{5}{2328}a^{11}+\frac{7}{291}a^{9}+\frac{229}{776}a^{7}+\frac{5}{97}a^{5}-\frac{11}{388}a^{3}+\frac{124}{291}a$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $3$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{215}{4656}a^{15}+\frac{1403}{4656}a^{13}+\frac{1259}{582}a^{11}+\frac{13495}{2328}a^{9}+\frac{4227}{776}a^{7}-\frac{809}{776}a^{5}-\frac{649}{194}a^{3}+\frac{1007}{1164}a$, $\frac{809}{4656}a^{15}+\frac{5087}{4656}a^{13}+\frac{18071}{2328}a^{11}+\frac{45595}{2328}a^{9}+\frac{9497}{776}a^{7}-\frac{5373}{776}a^{5}-\frac{363}{388}a^{3}+\frac{3467}{1164}a$, $\frac{1}{8}a^{15}-\frac{21}{388}a^{14}+\frac{7}{8}a^{13}-\frac{187}{776}a^{12}+\frac{49}{8}a^{11}-\frac{1423}{776}a^{10}+18a^{9}-\frac{703}{388}a^{8}+\frac{73}{4}a^{7}+\frac{595}{97}a^{6}+\frac{5}{4}a^{5}+\frac{3399}{388}a^{4}-\frac{9}{4}a^{3}+\frac{347}{388}a^{2}+3a+\frac{23}{194}$, $\frac{3}{97}a^{14}-\frac{1}{24}a^{13}-\frac{95}{388}a^{12}-\frac{1}{4}a^{11}-\frac{164}{97}a^{10}-\frac{11}{6}a^{9}-\frac{2217}{388}a^{8}-\frac{13}{3}a^{7}-\frac{727}{97}a^{6}-\frac{35}{12}a^{5}-\frac{373}{194}a^{4}+\frac{7}{6}a^{3}+\frac{202}{97}a^{2}+\frac{4}{3}a+\frac{27}{194}$, $\frac{359}{2328}a^{14}+\frac{589}{776}a^{12}+\frac{1661}{291}a^{10}+\frac{9725}{1164}a^{8}-\frac{10223}{1164}a^{6}-\frac{27439}{1164}a^{4}-\frac{1607}{291}a^{2}+\frac{1769}{194}$, $\frac{143}{1164}a^{15}+\frac{157}{2328}a^{14}+\frac{4205}{4656}a^{13}+\frac{417}{776}a^{12}+\frac{14891}{2328}a^{11}+\frac{8615}{2328}a^{10}+\frac{46873}{2328}a^{9}+\frac{29321}{2328}a^{8}+\frac{5199}{194}a^{7}+\frac{19589}{1164}a^{6}+\frac{8233}{776}a^{5}+\frac{6715}{1164}a^{4}-\frac{2121}{388}a^{3}-\frac{4639}{1164}a^{2}-\frac{2923}{1164}a-\frac{627}{388}$, $\frac{6241}{4656}a^{15}-\frac{154}{291}a^{14}+\frac{4409}{388}a^{13}-\frac{4275}{776}a^{12}+\frac{93959}{1164}a^{11}-\frac{89821}{2328}a^{10}+\frac{691033}{2328}a^{9}-\frac{385237}{2328}a^{8}+\frac{1235171}{2328}a^{7}-\frac{198443}{582}a^{6}+\frac{119417}{291}a^{5}-\frac{345041}{1164}a^{4}+\frac{11101}{291}a^{3}-\frac{40423}{1164}a^{2}-\frac{32859}{388}a+\frac{28763}{388}$
|
| |
| Regulator: | \( 3458924.353854156 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 3458924.353854156 \cdot 1}{2\cdot\sqrt{860651291502992840196096}}\cr\approx \mathstrut & 4.52831263533718 \end{aligned}\]
Galois group
$(C_2^2\times C_4^2):D_8$ (as 16T1282):
| A solvable group of order 1024 |
| The 43 conjugacy class representatives for $(C_2^2\times C_4^2):D_8$ |
| Character table for $(C_2^2\times C_4^2):D_8$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 4.0.3072.2, 8.0.7247757312.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{5}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{3}{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{3}{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{5}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{6}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.16.70c1.2906 | $x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 12 x^{8} + 16 x^{7} + 8 x^{4} + 2$ | $16$ | $1$ | $70$ | 16T1282 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$$ |
|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |