Normalized defining polynomial
\( x^{16} + 24x^{12} - 80x^{10} + 220x^{8} - 320x^{6} + 272x^{4} - 96x^{2} + 36 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(382511685112441262309376\)
\(\medspace = 2^{72}\cdot 3^{4}\)
|
| |
| Root discriminant: | \(29.78\) |
| |
| Galois root discriminant: | $2^{1269/256}3^{1/2}\approx 53.79918827448669$ | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-2}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{8}a^{8}-\frac{1}{2}a^{4}-\frac{1}{4}$, $\frac{1}{16}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}+\frac{1}{4}a^{5}+\frac{3}{8}a$, $\frac{1}{16}a^{10}-\frac{1}{2}a^{7}+\frac{1}{4}a^{6}+\frac{3}{8}a^{2}$, $\frac{1}{16}a^{11}+\frac{1}{4}a^{7}+\frac{3}{8}a^{3}$, $\frac{1}{16}a^{12}+\frac{3}{8}a^{4}-\frac{1}{2}$, $\frac{1}{16}a^{13}+\frac{3}{8}a^{5}-\frac{1}{2}a$, $\frac{1}{127536}a^{14}-\frac{1023}{42512}a^{12}-\frac{979}{42512}a^{10}-\frac{407}{31884}a^{8}-\frac{1}{2}a^{7}+\frac{3353}{63768}a^{6}-\frac{7927}{63768}a^{4}-\frac{15335}{63768}a^{2}-\frac{237}{2657}$, $\frac{1}{127536}a^{15}-\frac{1023}{42512}a^{13}-\frac{979}{42512}a^{11}-\frac{407}{31884}a^{9}+\frac{3353}{63768}a^{7}-\frac{7927}{63768}a^{5}-\frac{15335}{63768}a^{3}-\frac{237}{2657}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{283}{127536}a^{14}-\frac{13}{5314}a^{12}-\frac{241}{5314}a^{10}+\frac{3587}{31884}a^{8}-\frac{8321}{63768}a^{6}-\frac{5542}{7971}a^{4}+\frac{26801}{15942}a^{2}-\frac{17307}{5314}$, $\frac{283}{127536}a^{14}-\frac{13}{5314}a^{12}-\frac{241}{5314}a^{10}+\frac{3587}{31884}a^{8}-\frac{8321}{63768}a^{6}-\frac{5542}{7971}a^{4}+\frac{26801}{15942}a^{2}-\frac{6679}{5314}$, $\frac{1609}{127536}a^{15}+\frac{2047}{127536}a^{14}+\frac{1333}{42512}a^{13}-\frac{365}{42512}a^{12}+\frac{13675}{42512}a^{11}+\frac{15307}{42512}a^{10}-\frac{2303}{7971}a^{9}-\frac{95971}{63768}a^{8}+\frac{38465}{63768}a^{7}+\frac{231719}{63768}a^{6}+\frac{30941}{63768}a^{5}-\frac{348337}{63768}a^{4}-\frac{171161}{63768}a^{3}+\frac{174415}{63768}a^{2}+\frac{5207}{5314}a-\frac{19545}{10628}$, $\frac{1609}{127536}a^{15}-\frac{2047}{127536}a^{14}+\frac{1333}{42512}a^{13}+\frac{365}{42512}a^{12}+\frac{13675}{42512}a^{11}-\frac{15307}{42512}a^{10}-\frac{2303}{7971}a^{9}+\frac{95971}{63768}a^{8}+\frac{38465}{63768}a^{7}-\frac{231719}{63768}a^{6}+\frac{30941}{63768}a^{5}+\frac{348337}{63768}a^{4}-\frac{171161}{63768}a^{3}-\frac{174415}{63768}a^{2}+\frac{5207}{5314}a+\frac{19545}{10628}$, $\frac{14}{7971}a^{15}-\frac{1943}{63768}a^{14}-\frac{2007}{42512}a^{13}-\frac{2151}{42512}a^{12}-\frac{973}{10628}a^{11}-\frac{16157}{21256}a^{10}-\frac{64765}{63768}a^{9}+\frac{78427}{63768}a^{8}+\frac{17710}{7971}a^{7}-\frac{106195}{31884}a^{6}-\frac{400435}{63768}a^{5}+\frac{76117}{63768}a^{4}+\frac{101515}{15942}a^{3}+\frac{64075}{31884}a^{2}-\frac{18807}{10628}a-\frac{11959}{10628}$, $\frac{2061}{21256}a^{15}-\frac{3079}{127536}a^{14}-\frac{277}{5314}a^{13}+\frac{159}{5314}a^{12}-\frac{12493}{5314}a^{11}-\frac{11305}{21256}a^{10}+\frac{137681}{21256}a^{9}+\frac{170803}{63768}a^{8}-\frac{188323}{10628}a^{7}-\frac{423905}{63768}a^{6}+\frac{111421}{5314}a^{5}+\frac{173377}{15942}a^{4}-\frac{31779}{2657}a^{3}-\frac{324695}{31884}a^{2}-\frac{2373}{10628}a+\frac{14791}{10628}$, $\frac{2759}{127536}a^{15}-\frac{671}{127536}a^{14}+\frac{723}{42512}a^{13}+\frac{927}{42512}a^{12}-\frac{5591}{10628}a^{11}-\frac{1171}{10628}a^{10}+\frac{133511}{63768}a^{9}+\frac{59963}{63768}a^{8}-\frac{403117}{63768}a^{7}-\frac{161461}{63768}a^{6}+\frac{651791}{63768}a^{5}+\frac{329171}{63768}a^{4}-\frac{78814}{7971}a^{3}-\frac{39952}{7971}a^{2}+\frac{35585}{10628}a+\frac{22341}{10628}$
|
| |
| Regulator: | \( 754380.7895771225 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 754380.7895771225 \cdot 1}{2\cdot\sqrt{382511685112441262309376}}\cr\approx \mathstrut & 1.48141663931938 \end{aligned}\]
Galois group
$(C_2^2\times C_4^2):D_8$ (as 16T1276):
| A solvable group of order 1024 |
| The 43 conjugacy class representatives for $(C_2^2\times C_4^2):D_8$ |
| Character table for $(C_2^2\times C_4^2):D_8$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 4.0.2048.1, 8.0.3221225472.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{3}{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{6}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.16.72d1.85 | $x^{16} + 8 x^{14} + 16 x^{13} + 16 x^{9} + 16 x^{6} + 2$ | $16$ | $1$ | $72$ | 16T1276 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}, \frac{39}{8}, \frac{21}{4}]^{2}$$ |
|
\(3\)
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 3.2.2.2a1.1 | $x^{4} + 4 x^{3} + 8 x^{2} + 11 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
| 3.4.1.0a1.1 | $x^{4} + 2 x^{3} + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |