Normalized defining polynomial
\( x^{16} - 8x^{14} + 28x^{12} - 56x^{10} + 118x^{8} - 248x^{6} + 252x^{4} - 72x^{2} + 81 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(1530046740449765049237504\)
\(\medspace = 2^{74}\cdot 3^{4}\)
|
| |
| Root discriminant: | \(32.47\) |
| |
| Galois root discriminant: | $2^{1313/256}3^{1/2}\approx 60.60594865478429$ | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-2}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}+\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{12}a^{8}+\frac{1}{6}a^{6}+\frac{1}{6}a^{4}-\frac{1}{6}a^{2}-\frac{1}{4}$, $\frac{1}{12}a^{9}-\frac{1}{12}a^{7}-\frac{1}{4}a^{6}-\frac{1}{12}a^{5}-\frac{1}{4}a^{4}+\frac{1}{12}a^{3}+\frac{1}{4}a^{2}+\frac{1}{4}$, $\frac{1}{24}a^{10}-\frac{1}{24}a^{8}+\frac{1}{12}a^{6}-\frac{1}{12}a^{4}-\frac{1}{8}a^{2}+\frac{1}{8}$, $\frac{1}{24}a^{11}-\frac{1}{24}a^{9}+\frac{1}{12}a^{7}-\frac{1}{12}a^{5}-\frac{1}{8}a^{3}+\frac{1}{8}a$, $\frac{1}{72}a^{12}+\frac{1}{72}a^{8}-\frac{1}{6}a^{6}-\frac{5}{72}a^{4}-\frac{1}{2}a^{2}+\frac{3}{8}$, $\frac{1}{144}a^{13}-\frac{1}{144}a^{12}+\frac{1}{144}a^{9}-\frac{1}{144}a^{8}-\frac{1}{12}a^{7}+\frac{1}{12}a^{6}+\frac{31}{144}a^{5}-\frac{31}{144}a^{4}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}+\frac{7}{16}a-\frac{7}{16}$, $\frac{1}{144}a^{14}-\frac{1}{144}a^{12}+\frac{1}{144}a^{10}-\frac{1}{144}a^{8}-\frac{5}{144}a^{6}+\frac{29}{144}a^{4}+\frac{1}{48}a^{2}-\frac{3}{16}$, $\frac{1}{432}a^{15}+\frac{1}{432}a^{13}+\frac{1}{432}a^{11}-\frac{11}{432}a^{9}-\frac{53}{432}a^{7}-\frac{5}{432}a^{5}+\frac{11}{48}a^{3}+\frac{7}{48}a$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $3$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{144}a^{14}-\frac{1}{16}a^{12}+\frac{37}{144}a^{10}-\frac{9}{16}a^{8}+\frac{163}{144}a^{6}-\frac{121}{48}a^{4}+\frac{157}{48}a^{2}-\frac{19}{16}$, $\frac{1}{144}a^{14}-\frac{5}{144}a^{12}+\frac{13}{144}a^{10}-\frac{29}{144}a^{8}+\frac{115}{144}a^{6}-\frac{143}{144}a^{4}+\frac{7}{16}a^{2}-\frac{7}{16}$, $\frac{17}{432}a^{15}+\frac{127}{432}a^{13}-\frac{1}{24}a^{12}-\frac{413}{432}a^{11}+\frac{7}{24}a^{10}+\frac{763}{432}a^{9}-\frac{5}{6}a^{8}-\frac{1655}{432}a^{7}+\frac{4}{3}a^{6}+\frac{3361}{432}a^{5}-\frac{25}{8}a^{4}-\frac{97}{16}a^{3}+\frac{51}{8}a^{2}+\frac{13}{48}a-2$, $\frac{1}{216}a^{15}+\frac{1}{144}a^{14}+\frac{5}{216}a^{13}-\frac{5}{144}a^{12}-\frac{5}{108}a^{11}+\frac{13}{144}a^{10}+\frac{1}{27}a^{9}-\frac{29}{144}a^{8}-\frac{19}{216}a^{7}+\frac{79}{144}a^{6}+\frac{11}{216}a^{5}-\frac{107}{144}a^{4}+\frac{7}{12}a^{3}+\frac{11}{16}a^{2}-\frac{2}{3}a+\frac{5}{16}$, $\frac{29}{432}a^{15}+\frac{1}{18}a^{14}-\frac{187}{432}a^{13}-\frac{13}{36}a^{12}+\frac{533}{432}a^{11}+\frac{35}{36}a^{10}-\frac{895}{432}a^{9}-\frac{13}{9}a^{8}+\frac{2351}{432}a^{7}+\frac{35}{9}a^{6}-\frac{4105}{432}a^{5}-\frac{253}{36}a^{4}+\frac{215}{48}a^{3}+\frac{3}{4}a^{2}-\frac{229}{48}a-\frac{1}{2}$, $\frac{29}{432}a^{15}+\frac{1}{18}a^{14}+\frac{187}{432}a^{13}-\frac{13}{36}a^{12}-\frac{533}{432}a^{11}+\frac{35}{36}a^{10}+\frac{895}{432}a^{9}-\frac{13}{9}a^{8}-\frac{2351}{432}a^{7}+\frac{35}{9}a^{6}+\frac{4105}{432}a^{5}-\frac{253}{36}a^{4}-\frac{215}{48}a^{3}+\frac{3}{4}a^{2}+\frac{229}{48}a-\frac{1}{2}$, $\frac{7}{72}a^{15}+\frac{5}{48}a^{14}+\frac{49}{72}a^{13}-\frac{103}{144}a^{12}-\frac{77}{36}a^{11}+\frac{109}{48}a^{10}+\frac{137}{36}a^{9}-\frac{607}{144}a^{8}-\frac{625}{72}a^{7}+\frac{467}{48}a^{6}+\frac{1171}{72}a^{5}-\frac{2473}{144}a^{4}-\frac{145}{12}a^{3}+\frac{731}{48}a^{2}-\frac{11}{4}a-\frac{73}{16}$
|
| |
| Regulator: | \( 1507213.6887836482 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 1507213.6887836482 \cdot 1}{2\cdot\sqrt{1530046740449765049237504}}\cr\approx \mathstrut & 1.47989680306259 \end{aligned}\]
Galois group
$(C_2^2\times C_4^2):D_8$ (as 16T1276):
| A solvable group of order 1024 |
| The 43 conjugacy class representatives for $(C_2^2\times C_4^2):D_8$ |
| Character table for $(C_2^2\times C_4^2):D_8$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 4.0.2048.1, 8.0.6442450944.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{3}{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.16.74c1.182 | $x^{16} + 16 x^{14} + 16 x^{11} + 16 x^{10} + 32 x^{6} + 16 x^{2} + 2$ | $16$ | $1$ | $74$ | 16T1276 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5, \frac{41}{8}, \frac{43}{8}]^{2}$$ |
|
\(3\)
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |