Normalized defining polynomial
\( x^{16} + 8x^{14} + 20x^{12} - 56x^{8} - 56x^{6} + 8x^{4} + 48x^{2} + 54 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(143441881917165473366016\)
\(\medspace = 2^{69}\cdot 3^{5}\)
|
| |
| Root discriminant: | \(28.01\) |
| |
| Galois root discriminant: | $2^{1313/256}3^{1/2}\approx 60.60594865478429$ | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{6}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-2}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{6}-\frac{1}{3}a^{4}+\frac{1}{3}a^{2}$, $\frac{1}{3}a^{9}-\frac{1}{3}a^{7}-\frac{1}{3}a^{5}+\frac{1}{3}a^{3}$, $\frac{1}{3}a^{10}+\frac{1}{3}a^{6}+\frac{1}{3}a^{2}$, $\frac{1}{9}a^{11}+\frac{1}{9}a^{9}-\frac{1}{3}a^{7}-\frac{4}{9}a^{5}+\frac{2}{9}a^{3}+\frac{1}{3}a$, $\frac{1}{99}a^{12}-\frac{2}{99}a^{10}+\frac{2}{33}a^{8}-\frac{25}{99}a^{6}-\frac{43}{99}a^{4}+\frac{4}{11}a^{2}-\frac{5}{11}$, $\frac{1}{99}a^{13}-\frac{2}{99}a^{11}+\frac{2}{33}a^{9}-\frac{25}{99}a^{7}-\frac{43}{99}a^{5}+\frac{4}{11}a^{3}-\frac{5}{11}a$, $\frac{1}{99}a^{14}+\frac{2}{99}a^{10}-\frac{13}{99}a^{8}+\frac{2}{33}a^{6}+\frac{49}{99}a^{4}+\frac{3}{11}a^{2}+\frac{1}{11}$, $\frac{1}{99}a^{15}+\frac{2}{99}a^{11}-\frac{13}{99}a^{9}+\frac{2}{33}a^{7}+\frac{49}{99}a^{5}+\frac{3}{11}a^{3}+\frac{1}{11}a$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $3$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{4}{99}a^{14}+\frac{35}{99}a^{12}+\frac{103}{99}a^{10}+\frac{59}{99}a^{8}-\frac{191}{99}a^{6}-\frac{20}{9}a^{4}+\frac{16}{33}a^{2}+\frac{5}{11}$, $\frac{8}{99}a^{14}+\frac{5}{9}a^{12}+\frac{104}{99}a^{10}-\frac{71}{99}a^{8}-\frac{238}{99}a^{6}-\frac{92}{99}a^{4}+\frac{2}{11}a^{2}+\frac{19}{11}$, $\frac{8}{99}a^{15}+\frac{2}{99}a^{14}-\frac{20}{33}a^{13}+\frac{13}{99}a^{12}-\frac{46}{33}a^{11}+\frac{1}{9}a^{10}-\frac{1}{33}a^{9}-\frac{113}{99}a^{8}+2a^{7}-\frac{313}{99}a^{6}-\frac{4}{33}a^{5}-\frac{197}{99}a^{4}-\frac{8}{9}a^{3}+\frac{130}{33}a^{2}+\frac{106}{33}a+\frac{69}{11}$, $\frac{1}{99}a^{15}+\frac{1}{33}a^{14}-\frac{1}{11}a^{13}+\frac{43}{99}a^{12}-\frac{13}{33}a^{11}+\frac{217}{99}a^{10}-\frac{32}{33}a^{9}+\frac{50}{11}a^{8}-\frac{37}{33}a^{7}+\frac{197}{99}a^{6}+\frac{7}{11}a^{5}-\frac{448}{99}a^{4}+\frac{133}{99}a^{3}-\frac{238}{33}a^{2}+\frac{4}{3}a-\frac{69}{11}$, $\frac{2}{99}a^{14}+\frac{19}{99}a^{12}+\frac{65}{99}a^{10}+\frac{8}{9}a^{8}+\frac{32}{99}a^{6}-\frac{26}{99}a^{4}-\frac{6}{11}a^{2}-\frac{5}{11}$, $\frac{2}{99}a^{15}-\frac{1}{99}a^{14}+\frac{19}{99}a^{13}-\frac{16}{99}a^{12}+\frac{76}{99}a^{11}-\frac{34}{33}a^{10}+\frac{5}{3}a^{9}-\frac{314}{99}a^{8}+\frac{230}{99}a^{7}-\frac{398}{99}a^{6}+\frac{62}{99}a^{5}+\frac{59}{33}a^{4}-\frac{461}{99}a^{3}+\frac{272}{33}a^{2}-\frac{202}{33}a+\frac{57}{11}$, $\frac{7}{11}a^{15}+\frac{50}{99}a^{14}+\frac{578}{99}a^{13}+\frac{51}{11}a^{12}+\frac{1918}{99}a^{11}+\frac{1591}{99}a^{10}+\frac{2099}{99}a^{9}+\frac{2170}{99}a^{8}-\frac{1400}{99}a^{7}+\frac{26}{33}a^{6}-\frac{5014}{99}a^{5}-\frac{3889}{99}a^{4}-\frac{4199}{99}a^{3}-\frac{632}{11}a^{2}-\frac{44}{3}a-\frac{375}{11}$
|
| |
| Regulator: | \( 1045277.7176340753 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 1045277.7176340753 \cdot 1}{2\cdot\sqrt{143441881917165473366016}}\cr\approx \mathstrut & 3.35198955411705 \end{aligned}\]
Galois group
$(C_2^2\times C_4^2):D_8$ (as 16T1271):
| A solvable group of order 1024 |
| The 43 conjugacy class representatives for $(C_2^2\times C_4^2):D_8$ |
| Character table for $(C_2^2\times C_4^2):D_8$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 4.0.3072.2, 4.0.2048.1, 4.0.6144.1, 8.0.603979776.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{6}$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{3}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{6}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{5}{,}\,{\href{/padicField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.16.69c1.4215 | $x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 8 x^{6} + 32 x^{5} + 32 x^{3} + 2$ | $16$ | $1$ | $69$ | 16T1271 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5, \frac{41}{8}, \frac{43}{8}]^{2}$$ |
|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |