Normalized defining polynomial
\( x^{16} - 8x^{14} + 52x^{12} - 112x^{10} + 584x^{8} - 664x^{6} - 24x^{4} + 144x^{2} + 54 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(1290976937254489260294144\)
\(\medspace = 2^{69}\cdot 3^{7}\)
|
| |
| Root discriminant: | \(32.13\) |
| |
| Galois root discriminant: | $2^{1313/256}3^{1/2}\approx 60.60594865478429$ | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{6}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-2}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}+\frac{1}{3}a^{4}+\frac{1}{3}a^{2}$, $\frac{1}{3}a^{7}+\frac{1}{3}a^{5}+\frac{1}{3}a^{3}$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{2}$, $\frac{1}{3}a^{9}-\frac{1}{3}a^{3}$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{4}$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{5}$, $\frac{1}{9}a^{12}-\frac{1}{9}a^{10}-\frac{1}{9}a^{6}+\frac{1}{9}a^{4}$, $\frac{1}{9}a^{13}-\frac{1}{9}a^{11}-\frac{1}{9}a^{7}+\frac{1}{9}a^{5}$, $\frac{1}{519566157}a^{14}-\frac{17146607}{519566157}a^{12}+\frac{16851223}{519566157}a^{10}+\frac{83249297}{519566157}a^{8}+\frac{65142680}{519566157}a^{6}-\frac{195135346}{519566157}a^{4}-\frac{10396645}{57729573}a^{2}+\frac{28682707}{57729573}$, $\frac{1}{519566157}a^{15}-\frac{17146607}{519566157}a^{13}+\frac{16851223}{519566157}a^{11}+\frac{83249297}{519566157}a^{9}+\frac{65142680}{519566157}a^{7}-\frac{195135346}{519566157}a^{5}-\frac{10396645}{57729573}a^{3}+\frac{28682707}{57729573}a$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $3$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{9675692}{519566157}a^{14}-\frac{78484162}{519566157}a^{12}+\frac{513685529}{519566157}a^{10}-\frac{1152607625}{519566157}a^{8}+\frac{5854594045}{519566157}a^{6}-\frac{7195127408}{519566157}a^{4}+\frac{162204238}{57729573}a^{2}+\frac{103676873}{57729573}$, $\frac{420104}{47233287}a^{14}+\frac{3768049}{47233287}a^{12}-\frac{25101920}{47233287}a^{10}+\frac{68103821}{47233287}a^{8}-\frac{290254078}{47233287}a^{6}+\frac{515958824}{47233287}a^{4}-\frac{31882954}{5248143}a^{2}+\frac{642043}{5248143}$, $\frac{256378}{173188719}a^{14}-\frac{2041451}{173188719}a^{12}+\frac{13282075}{173188719}a^{10}-\frac{27626710}{173188719}a^{8}+\frac{138489668}{173188719}a^{6}-\frac{115720516}{173188719}a^{4}-\frac{6864842}{19243191}a^{2}+\frac{2803315}{19243191}$, $\frac{1039115}{47233287}a^{15}+\frac{8783440}{519566157}a^{14}-\frac{8492095}{47233287}a^{13}-\frac{71424647}{519566157}a^{12}+\frac{55423577}{47233287}a^{11}+\frac{470360464}{519566157}a^{10}-\frac{125112575}{47233287}a^{9}-\frac{1075096402}{519566157}a^{8}+\frac{623110069}{47233287}a^{7}+\frac{5456766545}{519566157}a^{6}-\frac{780621932}{47233287}a^{5}-\frac{6798077566}{519566157}a^{4}+\frac{6591373}{5248143}a^{3}+\frac{293818082}{57729573}a^{2}+\frac{33376580}{5248143}a+\frac{113456485}{57729573}$, $\frac{57399854}{519566157}a^{15}+\frac{1523338}{15744429}a^{14}+\frac{414536614}{519566157}a^{13}-\frac{10824212}{15744429}a^{12}-\frac{2669917406}{519566157}a^{11}+\frac{69414670}{15744429}a^{10}+\frac{4409142062}{519566157}a^{9}-\frac{107576350}{15744429}a^{8}-\frac{30451378858}{519566157}a^{7}+\frac{787603700}{15744429}a^{6}+\frac{15018567998}{519566157}a^{5}-\frac{298381942}{15744429}a^{4}+\frac{1030541108}{57729573}a^{3}-\frac{38356570}{1749381}a^{2}+\frac{263468338}{57729573}a-\frac{7762583}{1749381}$, $\frac{11076938}{519566157}a^{15}+\frac{17870516}{173188719}a^{14}+\frac{106510468}{519566157}a^{13}-\frac{147714532}{173188719}a^{12}-\frac{730290500}{519566157}a^{11}+\frac{968126384}{173188719}a^{10}+\frac{2267696798}{519566157}a^{9}-\frac{2252941838}{173188719}a^{8}-\frac{9103263700}{519566157}a^{7}+\frac{11000611636}{173188719}a^{6}+\frac{19398097880}{519566157}a^{5}-\frac{14658225446}{173188719}a^{4}-\frac{2079482128}{57729573}a^{3}+\frac{355185026}{19243191}a^{2}+\frac{1139832130}{57729573}a+\frac{380655179}{19243191}$, $\frac{2563568}{173188719}a^{15}-\frac{1595621}{173188719}a^{14}+\frac{3053734}{173188719}a^{13}-\frac{1676078}{173188719}a^{12}-\frac{4892663}{173188719}a^{11}+\frac{18355570}{173188719}a^{10}-\frac{548345296}{173188719}a^{9}-\frac{484131346}{173188719}a^{8}-\frac{24993097}{173188719}a^{7}+\frac{107114534}{173188719}a^{6}-\frac{7844440930}{173188719}a^{5}-\frac{6668044036}{173188719}a^{4}+\frac{590678405}{19243191}a^{3}+\frac{159498160}{19243191}a^{2}-\frac{66634004}{19243191}a+\frac{236716039}{19243191}$
|
| |
| Regulator: | \( 2838274.398199329 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 2838274.398199329 \cdot 1}{2\cdot\sqrt{1290976937254489260294144}}\cr\approx \mathstrut & 3.03391974974079 \end{aligned}\]
Galois group
$(C_2^2\times C_4^2):D_8$ (as 16T1271):
| A solvable group of order 1024 |
| The 43 conjugacy class representatives for $(C_2^2\times C_4^2):D_8$ |
| Character table for $(C_2^2\times C_4^2):D_8$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), 4.0.2048.1, 4.0.3072.2, 4.0.6144.1, 8.0.603979776.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{6}$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{3}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{6}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{5}{,}\,{\href{/padicField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.16.69c1.4214 | $x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 4 x^{8} + 16 x^{7} + 40 x^{6} + 32 x^{3} + 2$ | $16$ | $1$ | $69$ | 16T1271 | $$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, 5, \frac{41}{8}, \frac{43}{8}]^{2}$$ |
|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |