Normalized defining polynomial
\( x^{16} + 16x^{14} + 88x^{12} + 208x^{10} + 328x^{8} + 64x^{6} + 448x^{4} - 128x^{2} + 64 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(1378596953991976568487936\)
\(\medspace = 2^{58}\cdot 3^{14}\)
|
| |
Root discriminant: | \(32.26\) |
| |
Galois root discriminant: | $2^{2347/512}3^{7/8}\approx 62.71882224263865$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-3}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}$, $\frac{1}{2}a^{4}$, $\frac{1}{2}a^{5}$, $\frac{1}{4}a^{6}$, $\frac{1}{4}a^{7}$, $\frac{1}{24}a^{8}+\frac{1}{12}a^{6}+\frac{1}{3}a^{2}-\frac{1}{3}$, $\frac{1}{24}a^{9}+\frac{1}{12}a^{7}-\frac{1}{6}a^{3}-\frac{1}{3}a$, $\frac{1}{24}a^{10}+\frac{1}{12}a^{6}-\frac{1}{6}a^{4}-\frac{1}{3}$, $\frac{1}{48}a^{11}-\frac{1}{12}a^{7}+\frac{1}{6}a^{5}+\frac{1}{3}a$, $\frac{1}{48}a^{12}+\frac{1}{12}a^{6}+\frac{1}{3}$, $\frac{1}{48}a^{13}+\frac{1}{12}a^{7}+\frac{1}{3}a$, $\frac{1}{81312}a^{14}-\frac{19}{40656}a^{12}-\frac{13}{847}a^{10}-\frac{5}{2541}a^{8}-\frac{191}{3388}a^{6}-\frac{103}{847}a^{4}-\frac{80}{847}a^{2}-\frac{596}{2541}$, $\frac{1}{81312}a^{15}-\frac{19}{40656}a^{13}+\frac{223}{40656}a^{11}-\frac{5}{2541}a^{9}+\frac{1121}{10164}a^{7}+\frac{229}{5082}a^{5}-\frac{80}{847}a^{3}+\frac{251}{2541}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -\frac{5}{726} a^{14} - \frac{329}{2904} a^{12} - \frac{317}{484} a^{10} - \frac{4907}{2904} a^{8} - \frac{1003}{363} a^{6} - \frac{109}{121} a^{4} - \frac{886}{363} a^{2} + \frac{248}{363} \)
(order $6$)
|
| |
Fundamental units: |
$\frac{53}{10164}a^{14}+\frac{985}{13552}a^{12}+\frac{5773}{20328}a^{10}+\frac{279}{3388}a^{8}-\frac{765}{847}a^{6}-\frac{10742}{2541}a^{4}+\frac{727}{2541}a^{2}-\frac{4899}{847}$, $\frac{1}{2904}a^{14}-\frac{15}{1936}a^{12}-\frac{17}{242}a^{10}-\frac{929}{2904}a^{8}-\frac{274}{363}a^{6}-\frac{265}{242}a^{4}-\frac{285}{121}a^{2}-\frac{278}{363}$, $\frac{65}{40656}a^{14}+\frac{153}{6776}a^{12}+\frac{895}{10164}a^{10}+\frac{243}{6776}a^{8}+\frac{23}{5082}a^{6}-\frac{361}{2541}a^{4}+\frac{139}{2541}a^{2}-\frac{403}{2541}$, $\frac{61}{3872}a^{15}+\frac{1145}{81312}a^{14}+\frac{371}{1452}a^{13}+\frac{8737}{40656}a^{12}+\frac{2065}{1452}a^{11}+\frac{7123}{6776}a^{10}+\frac{9499}{2904}a^{9}+\frac{11555}{6776}a^{8}+\frac{3049}{726}a^{7}+\frac{11351}{10164}a^{6}-\frac{1169}{726}a^{5}-\frac{3590}{847}a^{4}+\frac{850}{363}a^{3}+\frac{8945}{2541}a^{2}+\frac{437}{363}a-\frac{195}{847}$, $\frac{115}{81312}a^{15}+\frac{353}{81312}a^{14}+\frac{401}{13552}a^{13}+\frac{435}{6776}a^{12}+\frac{199}{847}a^{11}+\frac{5903}{20328}a^{10}+\frac{18269}{20328}a^{9}+\frac{7055}{20328}a^{8}+\frac{18805}{10164}a^{7}+\frac{41}{2541}a^{6}+\frac{1707}{847}a^{5}-\frac{8945}{5082}a^{4}+\frac{117}{847}a^{3}+\frac{5062}{2541}a^{2}+\frac{3455}{2541}a-\frac{332}{2541}$, $\frac{65}{968}a^{15}+\frac{433}{13552}a^{14}-\frac{749}{726}a^{13}+\frac{22633}{40656}a^{12}-\frac{629}{121}a^{11}+\frac{35999}{10164}a^{10}-\frac{2361}{242}a^{9}+\frac{217093}{20328}a^{8}-\frac{3820}{363}a^{7}+\frac{16971}{847}a^{6}+\frac{3985}{242}a^{5}+\frac{85895}{5082}a^{4}-\frac{1972}{121}a^{3}+\frac{43069}{2541}a^{2}+\frac{11372}{363}a+\frac{38870}{2541}$, $\frac{239}{3872}a^{15}-\frac{2131}{81312}a^{14}-\frac{2929}{2904}a^{13}-\frac{17107}{40656}a^{12}-\frac{16723}{2904}a^{11}-\frac{1942}{847}a^{10}-\frac{14035}{968}a^{9}-\frac{101947}{20328}a^{8}-\frac{5639}{242}a^{7}-\frac{62989}{10164}a^{6}-\frac{5441}{726}a^{5}+\frac{2781}{1694}a^{4}-\frac{3261}{121}a^{3}-\frac{21323}{2541}a^{2}+\frac{1049}{363}a+\frac{17363}{2541}$
|
| |
Regulator: | \( 4411116.829747317 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 4411116.829747317 \cdot 1}{6\cdot\sqrt{1378596953991976568487936}}\cr\approx \mathstrut & 1.52095932381882 \end{aligned}\] (assuming GRH)
Galois group
$C_2^5.C_2\wr C_2^2$ (as 16T1455):
A solvable group of order 2048 |
The 44 conjugacy class representatives for $C_2^5.C_2\wr C_2^2$ |
Character table for $C_2^5.C_2\wr C_2^2$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), 4.0.1728.1, 8.0.2293235712.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{6}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{5}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{5}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.8.58a2.1847 | $x^{16} + 8 x^{15} + 48 x^{14} + 200 x^{13} + 626 x^{12} + 1528 x^{11} + 3012 x^{10} + 4888 x^{9} + 6623 x^{8} + 7528 x^{7} + 7204 x^{6} + 5768 x^{5} + 3854 x^{4} + 2096 x^{3} + 924 x^{2} + 304 x + 71$ | $8$ | $2$ | $58$ | 16T1455 | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, \frac{19}{4}]^{2}$$ |
\(3\)
| 3.1.8.7a1.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $$[\ ]_{8}^{2}$$ |
3.1.8.7a1.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $$[\ ]_{8}^{2}$$ |