Properties

Label 2.2.8.58a2.1847
Base \(\Q_{2}\)
Degree \(16\)
e \(8\)
f \(2\)
c \(58\)
Galois group $C_2^5.C_2\wr C_2^2$ (as 16T1455)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + \left(16 x + 16\right) ( x^{2} + x + 1 )^{5} + 8 ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $8$
Residue field degree $f$: $2$
Discriminant exponent $c$: $58$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_2$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3, \frac{7}{2}, \frac{19}{4}]$
Visible Swan slopes:$[2,\frac{5}{2},\frac{15}{4}]$
Means:$\langle1, \frac{7}{4}, \frac{11}{4}\rangle$
Rams:$(2, 3, 8)$
Jump set:$[1, 3, 7, 15]$
Roots of unity:$6 = (2^{ 2 } - 1) \cdot 2$

Intermediate fields

$\Q_{2}(\sqrt{5})$, 2.2.2.6a1.4, 2.2.4.20a2.8

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{2} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{8} + 8 t x^{7} + \left(4 t + 16\right) x^{6} + 8 x^{4} + 16 t x^{3} + 8 t x^{2} + 8 t + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + 1$,$z^2 + t$,$t z + t$
Associated inertia:$1$,$1$,$1$
Indices of inseparability:$[22, 14, 8, 0]$

Invariants of the Galois closure

Galois degree: $2048$
Galois group: $C_2^5.C_2\wr C_2^2$ (as 16T1455)
Inertia group: intransitive group not computed
Wild inertia group: not computed
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, \frac{19}{4}]$
Galois Swan slopes: $[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{13}{4},\frac{15}{4},\frac{15}{4}]$
Galois mean slope: $4.583984375$
Galois splitting model:$x^{16} + 16 x^{14} + 88 x^{12} + 208 x^{10} + 328 x^{8} + 64 x^{6} + 448 x^{4} - 128 x^{2} + 64$