-
nf_fields • Show schema
Hide schema
{'class_group': [], 'class_number': 1, 'cm': False, 'coeffs': [64, 0, -128, 0, 448, 0, 64, 0, 328, 0, 208, 0, 88, 0, 16, 0, 1], 'conductor': 0, 'degree': 16, 'dirichlet_group': [], 'disc_abs': 1378596953991976568487936, 'disc_rad': 6, 'disc_sign': 1, 'frobs': [[2, [0]], [3, [0]], [5, [[8, 2]]], [7, [[8, 1], [2, 1], [1, 6]]], [11, [[4, 2], [2, 4]]], [13, [[4, 1], [2, 5], [1, 2]]], [17, [[8, 2]]], [19, [[4, 2], [2, 2], [1, 4]]], [23, [[8, 2]]], [29, [[8, 2]]], [31, [[8, 1], [4, 1], [2, 2]]], [37, [[4, 2], [2, 4]]], [41, [[8, 2]]], [43, [[4, 1], [2, 5], [1, 2]]], [47, [[8, 2]]], [53, [[8, 2]]], [59, [[4, 4]]]], 'gal_is_abelian': False, 'gal_is_cyclic': False, 'gal_is_solvable': True, 'galois_disc_exponents': [9388, 1792], 'galois_label': '16T1455', 'galt': 1455, 'grd': 62.71882224263865, 'index': 1, 'inessentialp': [], 'is_galois': False, 'is_minimal_sibling': False, 'iso_number': 79, 'label': '16.0.1378596953991976568487936.79', 'local_algs': ['2.2.8.58a2.1847', '3.1.8.7a1.1', '3.1.8.7a1.1'], 'maximal_cm_subfield': [1, -1, 1], 'minimal_sibling': [27, 0, -108, 0, 198, 0, -168, 0, 109, 0, -64, 0, 30, 0, -4, 0, 1], 'monogenic': 0, 'narrow_class_group': [], 'narrow_class_number': 1, 'num_ram': 2, 'r2': 8, 'ramps': [2, 3], 'rd': 32.263749133641326, 'regulator': {'__RealLiteral__': 0, 'data': '4411116.829747317', 'prec': 57}, 'res': {'sib': ['1,0,-8,0,12,0,80,0,-346,0,312,0,1060,0,-3632,0,5046,0,-3632,0,1060,0,312,0,-346,0,80,0,12,0,-8,0,1', '1,0,0,0,28,0,48,0,166,0,120,0,388,0,72,0,502,0,-72,0,388,0,-120,0,166,0,-48,0,28,0,0,0,1', '1,0,68,0,1476,0,10948,0,30542,0,31452,0,42220,0,1292,0,-7194,0,2228,0,1900,0,-1164,0,398,0,-116,0,36,0,-4,0,1', '1,0,8,0,12,0,-80,0,-346,0,-312,0,1060,0,3632,0,5046,0,3632,0,1060,0,-312,0,-346,0,-80,0,12,0,8,0,1', '11664,0,-46656,0,116640,0,-186624,0,194832,0,-139104,0,75024,0,-46656,0,43320,0,-29808,0,18696,0,-8160,0,2836,0,-712,0,132,0,-16,0,1', '11664,0,46656,0,116640,0,186624,0,194832,0,139104,0,75024,0,46656,0,43320,0,29808,0,18696,0,8160,0,2836,0,712,0,132,0,16,0,1', '1296,0,0,0,-46656,0,-91008,0,1329168,0,2437632,0,2541952,0,1834688,0,1054572,0,535296,0,237120,0,83040,0,21348,0,3840,0,456,0,32,0,1', '1296,0,0,0,-46656,0,91008,0,1329168,0,-2437632,0,2541952,0,-1834688,0,1054572,0,-535296,0,237120,0,-83040,0,21348,0,-3840,0,456,0,-32,0,1', '13689,0,-106920,0,270000,0,-114264,0,-485892,0,538632,0,152544,0,-352104,0,102286,0,37448,0,-2960,0,-5128,0,76,0,152,0,64,0,8,0,1', '13689,0,106920,0,270000,0,114264,0,-485892,0,-538632,0,152544,0,352104,0,102286,0,-37448,0,-2960,0,5128,0,76,0,-152,0,64,0,-8,0,1', '144,0,-1152,0,4032,0,-8640,0,13776,0,-17376,0,16800,0,-12768,0,8764,0,-6256,0,4624,0,-2896,0,1372,0,-472,0,112,0,-16,0,1', '144,0,-1152,0,4608,0,-12672,0,26016,0,-39360,0,40896,0,-24000,0,952,0,10016,0,-6848,0,1376,0,520,0,-400,0,112,0,-16,0,1', '144,0,1152,0,4608,0,12672,0,26016,0,39360,0,40896,0,24000,0,952,0,-10016,0,-6848,0,-1376,0,520,0,400,0,112,0,16,0,1', '144,0,1152,0,5184,0,14976,0,27888,0,8928,0,-24528,0,-58272,0,-16004,0,25360,0,17800,0,2944,0,-248,0,-152,0,28,0,-8,0,1', '1521,0,-8352,0,-6048,0,40176,0,113262,0,136968,0,118788,0,84288,0,55711,0,29928,0,12316,0,3120,0,366,0,-72,0,-20,0,0,0,1', '16,0,0,0,-256,0,0,0,1120,0,0,0,8384,0,0,0,12184,0,0,0,4352,0,0,0,664,0,0,0,-16,0,0,0,1', '169,0,-244,0,2592,0,-5060,0,14792,0,-27780,0,52144,0,-75964,0,89322,0,-82900,0,57472,0,-28452,0,9800,0,-2276,0,336,0,-28,0,1', '169,0,1356,0,6200,0,21468,0,55024,0,103800,0,141824,0,127980,0,67591,0,15072,0,-2320,0,-1476,0,-8,0,-12,0,-16,0,0,0,1', '2025,15120,45072,70272,98244,74304,51120,-31680,-36054,-101232,-20640,-71616,46608,-59376,110064,-76416,163407,-80976,156544,-65472,97592,-36592,42288,-12800,13134,-2688,2832,-320,396,-16,32,0,1', '211588,-440960,958752,-1426624,1070592,-635680,-252400,825344,-958032,670208,-221072,-2336,339768,-123104,232064,-25600,39852,27776,-16336,30752,-7056,11472,2648,448,2264,-704,616,-176,116,-16,16,0,1', '21609,0,-59976,0,403380,0,-777600,0,1588326,0,-2277000,0,2446704,0,-1823352,0,982519,0,-347528,0,69784,0,2200,0,-4166,0,784,0,52,0,-8,0,1', '21609,0,59976,0,403380,0,777600,0,1588326,0,2277000,0,2446704,0,1823352,0,982519,0,347528,0,69784,0,-2200,0,-4166,0,-784,0,52,0,8,0,1', '2392572,6407520,-1369728,-14248512,2120208,33123072,29482416,4239744,-1301912,6519360,7155984,787040,-3975240,-3087744,-175040,704640,371334,2240,-108528,-44832,-13400,-2064,3696,3392,2064,528,-56,-96,-36,-16,0,0,1', '2401,0,0,0,-6380,0,0,0,15490,0,0,0,23896,0,0,0,10171,0,0,0,1384,0,0,0,-62,0,0,0,-20,0,0,0,1', '2401,0,0,0,6380,0,0,0,15490,0,0,0,-23896,0,0,0,10171,0,0,0,-1384,0,0,0,-62,0,0,0,20,0,0,0,1', '27,0,-108,0,198,0,-168,0,109,0,-64,0,30,0,-4,0,1', '27,0,108,0,198,0,168,0,109,0,64,0,30,0,4,0,1', '28561,0,0,0,-219868,0,0,0,531658,0,0,0,-311488,0,0,0,103795,0,0,0,-18688,0,0,0,2074,0,0,0,-76,0,0,0,1', '28561,0,0,0,219868,0,0,0,531658,0,0,0,311488,0,0,0,103795,0,0,0,18688,0,0,0,2074,0,0,0,76,0,0,0,1', '3462123,8286240,10853016,10248096,8017392,8002752,6773592,3195504,-1340606,-1231488,2053536,5065264,4952568,2152560,606976,-256992,306423,262768,295344,48336,1816,-35088,-10392,-4640,2226,864,592,-48,-24,-32,0,0,1', '38416,0,-301056,0,861824,0,-1069632,0,898144,0,-905088,0,886016,0,-607008,0,315160,0,-144768,0,53024,0,-12720,0,2584,0,-864,0,224,0,-24,0,1', '3969,0,-82296,0,693468,0,831384,0,497178,0,34272,0,-60288,0,49416,0,78559,0,27344,0,-344,0,-2920,0,-530,0,200,0,52,0,-16,0,1', '3969,0,82296,0,693468,0,-831384,0,497178,0,-34272,0,-60288,0,-49416,0,78559,0,-27344,0,-344,0,2920,0,-530,0,-200,0,52,0,16,0,1', '4,0,-32,0,88,0,-104,0,82,0,-8,0,28,0,4,0,1', '4,0,32,0,88,0,104,0,82,0,8,0,28,0,-4,0,1', '432,0,-1728,0,3024,0,-2688,0,1324,0,-368,0,60,0,-8,0,1', '432,0,1728,0,3024,0,2688,0,1324,0,368,0,60,0,8,0,1', '49,0,-44,0,276,0,-100,0,566,0,-192,0,556,0,-788,0,1527,0,-2000,0,2212,0,-1476,0,608,0,-196,0,48,0,-8,0,1', '49,0,44,0,276,0,100,0,566,0,192,0,556,0,788,0,1527,0,2000,0,2212,0,1476,0,608,0,196,0,48,0,8,0,1', '556348,2667328,3529632,-2581696,-5966064,17908448,56390000,49267328,-11918424,-43830784,-3399632,37378336,19645752,-13309664,-11959456,4362752,5740584,-909760,-1920304,243296,562824,-56400,-132232,13696,25868,-2432,-3944,304,452,-16,-32,0,1', '61009,0,-170032,0,1560468,0,-2383400,0,1536686,0,-314616,0,-165896,0,137600,0,-35937,0,-5704,0,7600,0,-1488,0,74,0,-152,0,12,0,8,0,1', '61009,0,170032,0,1560468,0,2383400,0,1536686,0,314616,0,-165896,0,-137600,0,-35937,0,5704,0,7600,0,1488,0,74,0,152,0,12,0,-8,0,1', '63504,0,-176256,0,133920,0,89856,0,33696,0,-86976,0,137136,0,-174528,0,108316,0,-59168,0,47368,0,-30944,0,12460,0,-3008,0,424,0,-32,0,1', '63504,0,176256,0,133920,0,-89856,0,33696,0,86976,0,137136,0,174528,0,108316,0,59168,0,47368,0,30944,0,12460,0,3008,0,424,0,32,0,1', '64,0,128,0,448,0,-64,0,328,0,-208,0,88,0,-16,0,1', '6561,0,-104976,0,472392,0,-454896,0,448092,0,-369360,0,170424,0,-466992,0,279270,0,44496,0,45048,0,8496,0,-612,0,-240,0,136,0,-16,0,1', '6561,0,104976,0,472392,0,454896,0,448092,0,369360,0,170424,0,466992,0,279270,0,-44496,0,45048,0,-8496,0,-612,0,240,0,136,0,16,0,1', '7201,73440,340112,958080,1866012,2698752,2997712,2555904,1600850,598944,-65376,-286080,-252248,-135168,30896,-38400,211419,-24864,269792,-6720,190888,-576,81840,0,22490,0,4048,0,468,0,32,0,1', '729,0,-11664,0,79704,0,-311040,0,785430,0,-1374408,0,1736064,0,-1623384,0,1142359,0,-611352,0,249616,0,-77112,0,17658,0,-2904,0,328,0,-24,0,1', '729,0,-5832,0,24300,0,-61560,0,112644,0,-167832,0,217404,0,-245640,0,230398,0,-168792,0,92788,0,-37416,0,10836,0,-2184,0,292,0,-24,0,1', '729,0,-5832,0,27216,0,-92016,0,225558,0,-397440,0,509796,0,-487896,0,358783,0,-208176,0,96476,0,-35352,0,9942,0,-2040,0,284,0,-24,0,1', '729,0,-8424,0,5484,0,136464,0,286566,0,122472,0,80296,0,181176,0,290215,0,232264,0,125728,0,49000,0,13546,0,2656,0,340,0,24,0,1', '729,0,0,0,-3888,0,0,0,2808,0,0,0,7992,0,0,0,7558,0,0,0,3280,0,0,0,696,0,0,0,40,0,0,0,1', '729,0,5832,0,24300,0,61560,0,112644,0,167832,0,217404,0,245640,0,230398,0,168792,0,92788,0,37416,0,10836,0,2184,0,292,0,24,0,1', '729,0,8424,0,5484,0,-136464,0,286566,0,-122472,0,80296,0,-181176,0,290215,0,-232264,0,125728,0,-49000,0,13546,0,-2656,0,340,0,-24,0,1', '74667,91680,334488,-267504,-206496,-65616,-275856,1062432,-541382,-1346368,1646560,642400,-1459320,-69520,658824,-17280,-198833,-25344,59040,25376,-15056,-10144,1232,2784,562,-768,-336,176,112,-16,-16,0,1', '81,0,-648,0,2160,0,-3240,0,630,0,4752,0,-5328,0,-1368,0,5451,0,-1776,0,-1776,0,1320,0,-50,0,-232,0,96,0,-16,0,1', '81,0,-648,0,2160,0,-4536,0,10350,0,-28656,0,62964,0,-93528,0,94083,0,-65904,0,33036,0,-12168,0,3418,0,-760,0,132,0,-16,0,1', '81,0,5184,0,79488,0,-159840,0,835596,0,-1500480,0,2978112,0,-3177312,0,2040310,0,-956480,0,353152,0,-101408,0,22444,0,-3776,0,448,0,-32,0,1', '81,0,648,0,2160,0,4536,0,10350,0,28656,0,62964,0,93528,0,94083,0,65904,0,33036,0,12168,0,3418,0,760,0,132,0,16,0,1', '811,-944,7704,15968,-157608,-347104,960200,1611584,-1126548,-2893024,-473504,1396960,746136,485392,622160,32384,-416604,-143824,212840,136640,-76008,-91008,1784,30112,8672,-5120,-2960,448,440,-16,-32,0,1', '8649,0,-28296,0,69768,0,-131832,0,229236,0,-343656,0,412200,0,-390168,0,287422,0,-157592,0,59608,0,-13544,0,1156,0,136,0,-8,0,-8,0,1', '8649,0,28296,0,69768,0,131832,0,229236,0,343656,0,412200,0,390168,0,287422,0,157592,0,59608,0,13544,0,1156,0,-136,0,-8,0,8,0,1', '90601,0,-186584,0,140580,0,-108712,0,-55450,0,206496,0,1024,0,-176552,0,119691,0,28672,0,-9392,0,-5976,0,-658,0,296,0,108,0,16,0,1', '90601,0,186584,0,140580,0,108712,0,-55450,0,-206496,0,1024,0,176552,0,119691,0,-28672,0,-9392,0,5976,0,-658,0,-296,0,108,0,-16,0,1']}, 'subfield_mults': [1, 1, 1], 'subfields': ['1.-1.1', '12.0.-6.0.1', '3.0.12.0.12.0.0.0.1'], 'torsion_gen': '\\( -\\frac{5}{726} a^{14} - \\frac{329}{2904} a^{12} - \\frac{317}{484} a^{10} - \\frac{4907}{2904} a^{8} - \\frac{1003}{363} a^{6} - \\frac{109}{121} a^{4} - \\frac{886}{363} a^{2} + \\frac{248}{363} \\)', 'torsion_order': 6, 'units': ['\\( \\frac{53}{10164} a^{14} + \\frac{985}{13552} a^{12} + \\frac{5773}{20328} a^{10} + \\frac{279}{3388} a^{8} - \\frac{765}{847} a^{6} - \\frac{10742}{2541} a^{4} + \\frac{727}{2541} a^{2} - \\frac{4899}{847} \\)', '\\( -\\frac{1}{2904} a^{14} - \\frac{15}{1936} a^{12} - \\frac{17}{242} a^{10} - \\frac{929}{2904} a^{8} - \\frac{274}{363} a^{6} - \\frac{265}{242} a^{4} - \\frac{285}{121} a^{2} - \\frac{278}{363} \\)', '\\( \\frac{65}{40656} a^{14} + \\frac{153}{6776} a^{12} + \\frac{895}{10164} a^{10} + \\frac{243}{6776} a^{8} + \\frac{23}{5082} a^{6} - \\frac{361}{2541} a^{4} + \\frac{139}{2541} a^{2} - \\frac{403}{2541} \\)', '\\( \\frac{61}{3872} a^{15} + \\frac{1145}{81312} a^{14} + \\frac{371}{1452} a^{13} + \\frac{8737}{40656} a^{12} + \\frac{2065}{1452} a^{11} + \\frac{7123}{6776} a^{10} + \\frac{9499}{2904} a^{9} + \\frac{11555}{6776} a^{8} + \\frac{3049}{726} a^{7} + \\frac{11351}{10164} a^{6} - \\frac{1169}{726} a^{5} - \\frac{3590}{847} a^{4} + \\frac{850}{363} a^{3} + \\frac{8945}{2541} a^{2} + \\frac{437}{363} a - \\frac{195}{847} \\)', '\\( \\frac{115}{81312} a^{15} + \\frac{353}{81312} a^{14} + \\frac{401}{13552} a^{13} + \\frac{435}{6776} a^{12} + \\frac{199}{847} a^{11} + \\frac{5903}{20328} a^{10} + \\frac{18269}{20328} a^{9} + \\frac{7055}{20328} a^{8} + \\frac{18805}{10164} a^{7} + \\frac{41}{2541} a^{6} + \\frac{1707}{847} a^{5} - \\frac{8945}{5082} a^{4} + \\frac{117}{847} a^{3} + \\frac{5062}{2541} a^{2} + \\frac{3455}{2541} a - \\frac{332}{2541} \\)', '\\( -\\frac{65}{968} a^{15} + \\frac{433}{13552} a^{14} - \\frac{749}{726} a^{13} + \\frac{22633}{40656} a^{12} - \\frac{629}{121} a^{11} + \\frac{35999}{10164} a^{10} - \\frac{2361}{242} a^{9} + \\frac{217093}{20328} a^{8} - \\frac{3820}{363} a^{7} + \\frac{16971}{847} a^{6} + \\frac{3985}{242} a^{5} + \\frac{85895}{5082} a^{4} - \\frac{1972}{121} a^{3} + \\frac{43069}{2541} a^{2} + \\frac{11372}{363} a + \\frac{38870}{2541} \\)', '\\( -\\frac{239}{3872} a^{15} - \\frac{2131}{81312} a^{14} - \\frac{2929}{2904} a^{13} - \\frac{17107}{40656} a^{12} - \\frac{16723}{2904} a^{11} - \\frac{1942}{847} a^{10} - \\frac{14035}{968} a^{9} - \\frac{101947}{20328} a^{8} - \\frac{5639}{242} a^{7} - \\frac{62989}{10164} a^{6} - \\frac{5441}{726} a^{5} + \\frac{2781}{1694} a^{4} - \\frac{3261}{121} a^{3} - \\frac{21323}{2541} a^{2} + \\frac{1049}{363} a + \\frac{17363}{2541} \\)'], 'used_grh': True, 'zk': ['1', 'a', 'a^2', '1/2*a^3', '1/2*a^4', '1/2*a^5', '1/4*a^6', '1/4*a^7', '1/24*a^8 + 1/12*a^6 + 1/3*a^2 - 1/3', '1/24*a^9 + 1/12*a^7 - 1/6*a^3 - 1/3*a', '1/24*a^10 + 1/12*a^6 - 1/6*a^4 - 1/3', '1/48*a^11 - 1/12*a^7 + 1/6*a^5 + 1/3*a', '1/48*a^12 + 1/12*a^6 + 1/3', '1/48*a^13 + 1/12*a^7 + 1/3*a', '1/81312*a^14 - 19/40656*a^12 - 13/847*a^10 - 5/2541*a^8 - 191/3388*a^6 - 103/847*a^4 - 80/847*a^2 - 596/2541', '1/81312*a^15 - 19/40656*a^13 + 223/40656*a^11 - 5/2541*a^9 + 1121/10164*a^7 + 229/5082*a^5 - 80/847*a^3 + 251/2541*a']}