Normalized defining polynomial
\( x^{16} - 4x^{14} - 20x^{12} + 128x^{10} + 178x^{8} - 664x^{6} + 424x^{4} - 16x^{2} + 4 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(1378596953991976568487936\)
\(\medspace = 2^{58}\cdot 3^{14}\)
|
| |
Root discriminant: | \(32.26\) |
| |
Galois root discriminant: | $2^{2347/512}3^{7/8}\approx 62.71882224263865$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-3}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{6}a^{8}-\frac{1}{3}a^{6}-\frac{1}{3}a^{2}-\frac{1}{3}$, $\frac{1}{6}a^{9}-\frac{1}{3}a^{7}-\frac{1}{3}a^{3}-\frac{1}{3}a$, $\frac{1}{6}a^{10}+\frac{1}{3}a^{6}-\frac{1}{3}a^{4}+\frac{1}{3}$, $\frac{1}{6}a^{11}+\frac{1}{3}a^{7}-\frac{1}{3}a^{5}+\frac{1}{3}a$, $\frac{1}{6}a^{12}+\frac{1}{3}a^{6}-\frac{1}{3}$, $\frac{1}{6}a^{13}+\frac{1}{3}a^{7}-\frac{1}{3}a$, $\frac{1}{8532006}a^{14}-\frac{58588}{1422001}a^{12}+\frac{21251}{2844002}a^{10}+\frac{4386}{1422001}a^{8}-\frac{1005451}{4266003}a^{6}+\frac{602814}{1422001}a^{4}-\frac{136049}{609429}a^{2}+\frac{1101302}{4266003}$, $\frac{1}{8532006}a^{15}-\frac{58588}{1422001}a^{13}+\frac{21251}{2844002}a^{11}+\frac{4386}{1422001}a^{9}-\frac{1005451}{4266003}a^{7}+\frac{602814}{1422001}a^{5}-\frac{136049}{609429}a^{3}+\frac{1101302}{4266003}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -\frac{541}{19659} a^{14} + \frac{2035}{19659} a^{12} + \frac{3724}{6553} a^{10} - \frac{132187}{39318} a^{8} - \frac{109714}{19659} a^{6} + \frac{106402}{6553} a^{4} - \frac{181396}{19659} a^{2} + \frac{14968}{19659} \)
(order $6$)
|
| |
Fundamental units: |
$\frac{155065}{2844002}a^{14}-\frac{898481}{4266003}a^{12}-\frac{4815014}{4266003}a^{10}+\frac{9727842}{1422001}a^{8}+\frac{46405012}{4266003}a^{6}-\frac{151099532}{4266003}a^{4}+\frac{3009510}{203143}a^{2}+\frac{1028537}{1422001}$, $\frac{501497}{8532006}a^{14}-\frac{321574}{1422001}a^{12}-\frac{1714375}{1422001}a^{10}+\frac{20790605}{2844002}a^{8}+\frac{49288480}{4266003}a^{6}-\frac{52082073}{1422001}a^{4}+\frac{11428064}{609429}a^{2}+\frac{1570699}{4266003}$, $\frac{281177}{8532006}a^{15}-\frac{6291}{1422001}a^{14}+\frac{571474}{4266003}a^{13}+\frac{84557}{8532006}a^{12}+\frac{5555329}{8532006}a^{11}+\frac{1026955}{8532006}a^{10}-\frac{6055459}{1422001}a^{9}-\frac{601840}{1422001}a^{8}-\frac{23919001}{4266003}a^{7}-\frac{2380416}{1422001}a^{6}+\frac{94893422}{4266003}a^{5}+\frac{5972276}{4266003}a^{4}-\frac{9150092}{609429}a^{3}+\frac{288743}{203143}a^{2}+\frac{2677312}{4266003}a-\frac{3234061}{4266003}$, $\frac{31909}{8532006}a^{14}-\frac{81532}{4266003}a^{12}-\frac{98159}{1422001}a^{10}+\frac{5002657}{8532006}a^{8}+\frac{1672604}{4266003}a^{6}-\frac{5903605}{1422001}a^{4}+\frac{60504}{203143}a^{2}-\frac{155065}{1422001}$, $\frac{194913}{2844002}a^{15}-\frac{194913}{2844002}a^{14}+\frac{943321}{4266003}a^{13}+\frac{943321}{4266003}a^{12}+\frac{6555379}{4266003}a^{11}+\frac{6555379}{4266003}a^{10}-\frac{10751458}{1422001}a^{9}-\frac{10751458}{1422001}a^{8}-\frac{76689215}{4266003}a^{7}-\frac{76689215}{4266003}a^{6}+\frac{132457102}{4266003}a^{5}+\frac{132457102}{4266003}a^{4}-\frac{1177912}{203143}a^{3}-\frac{1177912}{203143}a^{2}-\frac{1337772}{1422001}a+\frac{84229}{1422001}$, $\frac{7484}{19659}a^{15}-\frac{1213655}{8532006}a^{14}-\frac{9618}{6553}a^{13}+\frac{2487410}{4266003}a^{12}-\frac{51250}{6553}a^{11}+\frac{3990869}{1422001}a^{10}+\frac{935608}{19659}a^{9}-\frac{158244631}{8532006}a^{8}+\frac{488113}{6553}a^{7}-\frac{102000803}{4266003}a^{6}-\frac{1583316}{6553}a^{5}+\frac{140691421}{1422001}a^{4}+\frac{2534804}{19659}a^{3}-\frac{39725620}{609429}a^{2}+\frac{81016}{6553}a+\frac{2051135}{4266003}$, $\frac{210768}{1422001}a^{15}+\frac{155413}{1422001}a^{14}+\frac{2428204}{4266003}a^{13}-\frac{1915936}{4266003}a^{12}+\frac{8744297}{2844002}a^{11}-\frac{18389885}{8532006}a^{10}-\frac{26362806}{1422001}a^{9}+\frac{121911877}{8532006}a^{8}-\frac{127282045}{4266003}a^{7}+\frac{78081802}{4266003}a^{6}+\frac{136465276}{1422001}a^{5}-\frac{327180841}{4266003}a^{4}-\frac{8484215}{203143}a^{3}+\frac{30575528}{609429}a^{2}-\frac{72952262}{4266003}a+\frac{9158183}{4266003}$
|
| |
Regulator: | \( 867494.3022313387 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 867494.3022313387 \cdot 1}{6\cdot\sqrt{1378596953991976568487936}}\cr\approx \mathstrut & 0.299113262754829 \end{aligned}\]
Galois group
$C_2^5.C_2\wr C_2^2$ (as 16T1455):
A solvable group of order 2048 |
The 44 conjugacy class representatives for $C_2^5.C_2\wr C_2^2$ |
Character table for $C_2^5.C_2\wr C_2^2$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), 4.0.1728.1, 8.0.2293235712.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{5}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{6}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.8.58a2.1523 | $x^{16} + 8 x^{15} + 48 x^{14} + 200 x^{13} + 626 x^{12} + 1528 x^{11} + 2996 x^{10} + 4808 x^{9} + 6383 x^{8} + 7048 x^{7} + 6492 x^{6} + 4984 x^{5} + 3190 x^{4} + 1680 x^{3} + 724 x^{2} + 240 x + 55$ | $8$ | $2$ | $58$ | 16T1455 | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, \frac{19}{4}]^{2}$$ |
\(3\)
| 3.2.8.14a1.2 | $x^{16} + 16 x^{15} + 128 x^{14} + 672 x^{13} + 2576 x^{12} + 7616 x^{11} + 17920 x^{10} + 34176 x^{9} + 53344 x^{8} + 68352 x^{7} + 71680 x^{6} + 60928 x^{5} + 41216 x^{4} + 21504 x^{3} + 8192 x^{2} + 2048 x + 259$ | $8$ | $2$ | $14$ | $QD_{16}$ | $$[\ ]_{8}^{2}$$ |