Normalized defining polynomial
\( x^{16} + 8x^{14} + 24x^{12} + 56x^{10} + 100x^{8} + 96x^{6} + 372x^{4} + 240x^{2} + 507 \)
Invariants
Degree: | $16$ |
| |
Signature: | $[0, 8]$ |
| |
Discriminant: |
\(1838129271989302091317248\)
\(\medspace = 2^{60}\cdot 3^{13}\)
|
| |
Root discriminant: | \(32.85\) |
| |
Galois root discriminant: | $2^{2347/512}3^{7/8}\approx 62.71882224263865$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q(\sqrt{3}) \) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-3}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{3}$, $\frac{1}{6}a^{12}+\frac{1}{6}a^{10}+\frac{1}{6}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{6}a^{13}+\frac{1}{6}a^{11}+\frac{1}{6}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{10776582}a^{14}-\frac{102358}{1796097}a^{12}+\frac{128284}{598699}a^{10}+\frac{47728}{5388291}a^{8}+\frac{568815}{1197398}a^{6}-\frac{417944}{1796097}a^{4}+\frac{265653}{598699}a^{2}+\frac{834100}{1796097}$, $\frac{1}{140095566}a^{15}-\frac{433252}{7783087}a^{13}-\frac{3421189}{46698522}a^{11}+\frac{9075941}{140095566}a^{9}+\frac{2963611}{15566174}a^{7}-\frac{7602332}{23349261}a^{5}-\frac{2462189}{15566174}a^{3}-\frac{3720091}{46698522}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
Rank: | $7$ |
| |
Torsion generator: |
\( -\frac{8}{3673} a^{14} - \frac{197}{11019} a^{12} - \frac{464}{11019} a^{10} - \frac{1657}{22038} a^{8} - \frac{730}{3673} a^{6} - \frac{614}{3673} a^{4} - \frac{3410}{3673} a^{2} + \frac{1473}{7346} \)
(order $6$)
|
| |
Fundamental units: |
$\frac{29912}{5388291}a^{14}+\frac{9460}{598699}a^{12}-\frac{182696}{1796097}a^{10}-\frac{2824813}{10776582}a^{8}-\frac{32601}{598699}a^{6}-\frac{1411616}{1796097}a^{4}-\frac{39883}{598699}a^{2}-\frac{12509587}{3592194}$, $\frac{4726}{5388291}a^{14}+\frac{3256}{598699}a^{12}-\frac{74020}{1796097}a^{10}-\frac{1186679}{10776582}a^{8}+\frac{61180}{598699}a^{6}-\frac{789385}{1796097}a^{4}+\frac{8550}{598699}a^{2}-\frac{3701357}{3592194}$, $\frac{389534}{70047783}a^{15}-\frac{3900}{598699}a^{14}-\frac{512673}{15566174}a^{13}-\frac{53798}{1796097}a^{12}-\frac{2620559}{46698522}a^{11}-\frac{37351}{3592194}a^{10}-\frac{5945701}{70047783}a^{9}+\frac{75569}{3592194}a^{8}-\frac{867999}{7783087}a^{7}+\frac{7752}{598699}a^{6}-\frac{9869585}{46698522}a^{5}+\frac{141435}{598699}a^{4}-\frac{14745255}{15566174}a^{3}-\frac{529597}{1197398}a^{2}+\frac{91412}{23349261}a+\frac{2288295}{1197398}$, $\frac{826775}{140095566}a^{15}-\frac{9037}{10776582}a^{14}-\frac{2327293}{46698522}a^{13}+\frac{19291}{1796097}a^{12}-\frac{7074413}{46698522}a^{11}+\frac{156211}{1197398}a^{10}-\frac{55811227}{140095566}a^{9}+\frac{4878979}{10776582}a^{8}-\frac{14733707}{15566174}a^{7}+\frac{1245857}{1197398}a^{6}-\frac{55804885}{46698522}a^{5}+\frac{3360131}{1796097}a^{4}-\frac{52359071}{15566174}a^{3}+\frac{752357}{1197398}a^{2}-\frac{26517961}{46698522}a+\frac{9895303}{3592194}$, $\frac{122873}{70047783}a^{15}+\frac{12959}{1796097}a^{14}-\frac{269417}{23349261}a^{13}+\frac{122449}{3592194}a^{12}-\frac{185320}{7783087}a^{11}+\frac{207689}{1796097}a^{10}-\frac{4043872}{70047783}a^{9}+\frac{233623}{598699}a^{8}-\frac{482934}{7783087}a^{7}+\frac{274491}{598699}a^{6}-\frac{1740721}{23349261}a^{5}+\frac{1772927}{1197398}a^{4}+\frac{174220}{7783087}a^{3}+\frac{467862}{598699}a^{2}+\frac{13608107}{23349261}a+\frac{979007}{598699}$, $\frac{709}{5388291}a^{14}+\frac{81727}{3592194}a^{12}+\frac{305347}{1796097}a^{10}+\frac{4241527}{10776582}a^{8}+\frac{365408}{598699}a^{6}+\frac{5523127}{3592194}a^{4}+\frac{712982}{598699}a^{2}+\frac{7232239}{3592194}$, $\frac{13133983}{140095566}a^{15}+\frac{542846}{5388291}a^{14}+\frac{35712647}{46698522}a^{13}+\frac{415548}{598699}a^{12}+\frac{102349573}{46698522}a^{11}+\frac{5194055}{3592194}a^{10}+\frac{607545803}{140095566}a^{9}+\frac{27960107}{10776582}a^{8}+\frac{113493957}{15566174}a^{7}+\frac{2333036}{598699}a^{6}+\frac{235245677}{46698522}a^{5}-\frac{1491653}{1796097}a^{4}+\frac{424714735}{15566174}a^{3}+\frac{34287075}{1197398}a^{2}+\frac{1191711713}{46698522}a-\frac{34616497}{3592194}$
|
| |
Regulator: | \( 4444407.242765245 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 4444407.242765245 \cdot 1}{6\cdot\sqrt{1838129271989302091317248}}\cr\approx \mathstrut & 1.32713015573560 \end{aligned}\] (assuming GRH)
Galois group
$C_2^5.C_2\wr C_2^2$ (as 16T1444):
A solvable group of order 2048 |
The 44 conjugacy class representatives for $C_2^5.C_2\wr C_2^2$ |
Character table for $C_2^5.C_2\wr C_2^2$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), 4.0.1728.1, 8.0.3057647616.14 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }^{2}$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{5}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{6}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.8.60a2.3177 | $x^{16} + 16 x^{15} + 100 x^{14} + 400 x^{13} + 1158 x^{12} + 2608 x^{11} + 4736 x^{10} + 7104 x^{9} + 8911 x^{8} + 9408 x^{7} + 8368 x^{6} + 6240 x^{5} + 3870 x^{4} + 1952 x^{3} + 804 x^{2} + 256 x + 67$ | $8$ | $2$ | $60$ | 16T1444 | $$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{17}{4}, \frac{19}{4}, \frac{19}{4}]^{2}$$ |
\(3\)
| 3.1.4.3a1.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ |
3.1.4.3a1.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ | |
3.1.8.7a1.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $$[\ ]_{8}^{2}$$ |