Properties

Label 15.15.1386229293...6697.2
Degree $15$
Signature $[15, 0]$
Discriminant $3^{15}\cdot 11^{13}\cdot 23^{4}$
Root discriminant $55.31$
Ramified primes $3, 11, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 15T33

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![12167, -111090, -566559, -847458, -393162, 196857, 243271, 31254, -40869, -12674, 2727, 1341, -63, -60, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 60*x^13 - 63*x^12 + 1341*x^11 + 2727*x^10 - 12674*x^9 - 40869*x^8 + 31254*x^7 + 243271*x^6 + 196857*x^5 - 393162*x^4 - 847458*x^3 - 566559*x^2 - 111090*x + 12167)
 
gp: K = bnfinit(x^15 - 60*x^13 - 63*x^12 + 1341*x^11 + 2727*x^10 - 12674*x^9 - 40869*x^8 + 31254*x^7 + 243271*x^6 + 196857*x^5 - 393162*x^4 - 847458*x^3 - 566559*x^2 - 111090*x + 12167, 1)
 

Normalized defining polynomial

\( x^{15} - 60 x^{13} - 63 x^{12} + 1341 x^{11} + 2727 x^{10} - 12674 x^{9} - 40869 x^{8} + 31254 x^{7} + 243271 x^{6} + 196857 x^{5} - 393162 x^{4} - 847458 x^{3} - 566559 x^{2} - 111090 x + 12167 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[15, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(138622929316925604547946697=3^{15}\cdot 11^{13}\cdot 23^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $55.31$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 11, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{46} a^{11} + \frac{9}{46} a^{9} - \frac{17}{46} a^{8} - \frac{8}{23} a^{7} + \frac{13}{46} a^{6} + \frac{11}{23} a^{5} - \frac{21}{46} a^{4} - \frac{3}{46} a^{3} - \frac{1}{2} a$, $\frac{1}{46} a^{12} + \frac{9}{46} a^{10} - \frac{17}{46} a^{9} - \frac{8}{23} a^{8} + \frac{13}{46} a^{7} + \frac{11}{23} a^{6} - \frac{21}{46} a^{5} - \frac{3}{46} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{46} a^{13} + \frac{3}{23} a^{10} - \frac{5}{46} a^{9} + \frac{5}{46} a^{8} + \frac{5}{46} a^{7} + \frac{3}{23} a^{5} + \frac{5}{46} a^{4} - \frac{19}{46} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{129649383482897606} a^{14} + \frac{1370582028003}{2818464858323861} a^{13} + \frac{1116203339767801}{129649383482897606} a^{12} - \frac{476042798426446}{64824691741448803} a^{11} + \frac{11761559712566980}{64824691741448803} a^{10} - \frac{30751633983264715}{64824691741448803} a^{9} - \frac{48696723960966531}{129649383482897606} a^{8} + \frac{45223747407969715}{129649383482897606} a^{7} - \frac{15277409928907350}{64824691741448803} a^{6} + \frac{1183941636284865}{2818464858323861} a^{5} - \frac{829197257205122}{2818464858323861} a^{4} + \frac{2491739095884287}{5636929716647722} a^{3} - \frac{12653543406775}{122541950361907} a^{2} - \frac{122129403538203}{245083900723814} a + \frac{13370030390824}{122541950361907}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 181222525.173 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T33:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 810
The 18 conjugacy class representatives for [3^4:2]5
Character table for [3^4:2]5

Intermediate fields

\(\Q(\zeta_{11})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 15 siblings: data not computed
Degree 30 siblings: data not computed
Degree 45 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.5.0.1}{5} }^{3}$ R ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }$ ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ R ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }$ ${\href{/LocalNumberField/17.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ R ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{5}$ ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }$ ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
$11$11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.10.9.1$x^{10} - 11$$10$$1$$9$$C_{10}$$[\ ]_{10}$
$23$$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.3.2.1$x^{3} - 23$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
23.3.2.1$x^{3} - 23$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$