Normalized defining polynomial
\( x^{15} - 60 x^{13} - 63 x^{12} + 1341 x^{11} + 2727 x^{10} - 12674 x^{9} - 40869 x^{8} + 31254 x^{7} + \cdots + 12167 \)
Invariants
| Degree: | $15$ |
| |
| Signature: | $[15, 0]$ |
| |
| Discriminant: |
\(138622929316925604547946697\)
\(\medspace = 3^{15}\cdot 11^{13}\cdot 23^{4}\)
|
| |
| Root discriminant: | \(55.31\) |
| |
| Galois root discriminant: | $3^{241/162}11^{9/10}23^{2/3}\approx 358.80911756371285$ | ||
| Ramified primes: |
\(3\), \(11\), \(23\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{33}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{46}a^{11}+\frac{9}{46}a^{9}-\frac{17}{46}a^{8}-\frac{8}{23}a^{7}+\frac{13}{46}a^{6}+\frac{11}{23}a^{5}-\frac{21}{46}a^{4}-\frac{3}{46}a^{3}-\frac{1}{2}a$, $\frac{1}{46}a^{12}+\frac{9}{46}a^{10}-\frac{17}{46}a^{9}-\frac{8}{23}a^{8}+\frac{13}{46}a^{7}+\frac{11}{23}a^{6}-\frac{21}{46}a^{5}-\frac{3}{46}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{46}a^{13}+\frac{3}{23}a^{10}-\frac{5}{46}a^{9}+\frac{5}{46}a^{8}+\frac{5}{46}a^{7}+\frac{3}{23}a^{5}+\frac{5}{46}a^{4}-\frac{19}{46}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{12\cdots 06}a^{14}+\frac{1370582028003}{28\cdots 61}a^{13}+\frac{11\cdots 01}{12\cdots 06}a^{12}-\frac{476042798426446}{64\cdots 03}a^{11}+\frac{11\cdots 80}{64\cdots 03}a^{10}-\frac{30\cdots 15}{64\cdots 03}a^{9}-\frac{48\cdots 31}{12\cdots 06}a^{8}+\frac{45\cdots 15}{12\cdots 06}a^{7}-\frac{15\cdots 50}{64\cdots 03}a^{6}+\frac{11\cdots 65}{28\cdots 61}a^{5}-\frac{829197257205122}{28\cdots 61}a^{4}+\frac{24\cdots 87}{56\cdots 22}a^{3}-\frac{12653543406775}{122541950361907}a^{2}-\frac{122129403538203}{245083900723814}a+\frac{13370030390824}{122541950361907}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ (assuming GRH) |
|
Unit group
| Rank: | $14$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{39\cdots 85}{12\cdots 06}a^{14}-\frac{402746262548505}{56\cdots 22}a^{13}-\frac{21\cdots 41}{12\cdots 06}a^{12}+\frac{12\cdots 67}{64\cdots 03}a^{11}+\frac{23\cdots 36}{64\cdots 03}a^{10}-\frac{28\cdots 25}{12\cdots 06}a^{9}-\frac{24\cdots 26}{64\cdots 03}a^{8}-\frac{22\cdots 96}{64\cdots 03}a^{7}+\frac{11\cdots 82}{64\cdots 03}a^{6}+\frac{90\cdots 37}{28\cdots 61}a^{5}-\frac{90\cdots 79}{56\cdots 22}a^{4}-\frac{22\cdots 90}{28\cdots 61}a^{3}-\frac{16\cdots 25}{245083900723814}a^{2}-\frac{18\cdots 37}{122541950361907}a+\frac{39\cdots 01}{245083900723814}$, $\frac{368748726176169}{64\cdots 03}a^{14}-\frac{47850023790447}{56\cdots 22}a^{13}-\frac{21\cdots 66}{64\cdots 03}a^{12}+\frac{88\cdots 58}{64\cdots 03}a^{11}+\frac{48\cdots 20}{64\cdots 03}a^{10}+\frac{55\cdots 51}{12\cdots 06}a^{9}-\frac{10\cdots 87}{12\cdots 06}a^{8}-\frac{14\cdots 15}{12\cdots 06}a^{7}+\frac{22\cdots 67}{64\cdots 03}a^{6}+\frac{23\cdots 21}{28\cdots 61}a^{5}-\frac{10\cdots 35}{56\cdots 22}a^{4}-\frac{11\cdots 83}{56\cdots 22}a^{3}-\frac{44\cdots 57}{245083900723814}a^{2}-\frac{10\cdots 69}{245083900723814}a+\frac{11\cdots 71}{245083900723814}$, $\frac{97681176961776}{64\cdots 03}a^{14}+\frac{13628846444295}{28\cdots 61}a^{13}-\frac{77\cdots 22}{64\cdots 03}a^{12}-\frac{36\cdots 67}{12\cdots 06}a^{11}+\frac{20\cdots 67}{64\cdots 03}a^{10}+\frac{90\cdots 41}{12\cdots 06}a^{9}-\frac{44\cdots 91}{12\cdots 06}a^{8}-\frac{57\cdots 83}{64\cdots 03}a^{7}+\frac{18\cdots 49}{12\cdots 06}a^{6}+\frac{14\cdots 22}{28\cdots 61}a^{5}+\frac{18\cdots 67}{56\cdots 22}a^{4}-\frac{61\cdots 19}{56\cdots 22}a^{3}-\frac{13\cdots 77}{122541950361907}a^{2}-\frac{69\cdots 73}{245083900723814}a+\frac{30\cdots 02}{122541950361907}$, $\frac{466429903137945}{64\cdots 03}a^{14}-\frac{20592330901857}{56\cdots 22}a^{13}-\frac{29\cdots 88}{64\cdots 03}a^{12}-\frac{18\cdots 51}{12\cdots 06}a^{11}+\frac{68\cdots 87}{64\cdots 03}a^{10}+\frac{72\cdots 96}{64\cdots 03}a^{9}-\frac{73\cdots 39}{64\cdots 03}a^{8}-\frac{26\cdots 81}{12\cdots 06}a^{7}+\frac{64\cdots 83}{12\cdots 06}a^{6}+\frac{38\cdots 43}{28\cdots 61}a^{5}-\frac{44\cdots 34}{28\cdots 61}a^{4}-\frac{37\cdots 87}{122541950361907}a^{3}-\frac{71\cdots 11}{245083900723814}a^{2}-\frac{88\cdots 71}{122541950361907}a+\frac{17\cdots 75}{245083900723814}$, $\frac{432580983011511}{64\cdots 03}a^{14}-\frac{39165327120835}{56\cdots 22}a^{13}-\frac{52\cdots 49}{12\cdots 06}a^{12}+\frac{51\cdots 99}{12\cdots 06}a^{11}+\frac{12\cdots 53}{12\cdots 06}a^{10}+\frac{90\cdots 11}{12\cdots 06}a^{9}-\frac{64\cdots 93}{64\cdots 03}a^{8}-\frac{98\cdots 48}{64\cdots 03}a^{7}+\frac{57\cdots 09}{12\cdots 06}a^{6}+\frac{61\cdots 61}{56\cdots 22}a^{5}-\frac{13\cdots 21}{56\cdots 22}a^{4}-\frac{30\cdots 47}{122541950361907}a^{3}-\frac{27\cdots 27}{122541950361907}a^{2}-\frac{67\cdots 80}{122541950361907}a+\frac{13\cdots 25}{245083900723814}$, $\frac{25\cdots 89}{64\cdots 03}a^{14}-\frac{481488339031855}{56\cdots 22}a^{13}-\frac{14\cdots 09}{64\cdots 03}a^{12}+\frac{14\cdots 05}{64\cdots 03}a^{11}+\frac{31\cdots 98}{64\cdots 03}a^{10}+\frac{62\cdots 59}{12\cdots 06}a^{9}-\frac{67\cdots 47}{12\cdots 06}a^{8}-\frac{69\cdots 87}{12\cdots 06}a^{7}+\frac{15\cdots 80}{64\cdots 03}a^{6}+\frac{13\cdots 97}{28\cdots 61}a^{5}-\frac{11\cdots 55}{56\cdots 22}a^{4}-\frac{64\cdots 29}{56\cdots 22}a^{3}-\frac{23\cdots 01}{245083900723814}a^{2}-\frac{54\cdots 15}{245083900723814}a+\frac{56\cdots 53}{245083900723814}$, $\frac{334899806049735}{64\cdots 03}a^{14}-\frac{66423020009425}{56\cdots 22}a^{13}-\frac{36\cdots 05}{12\cdots 06}a^{12}+\frac{20\cdots 33}{64\cdots 03}a^{11}+\frac{80\cdots 19}{12\cdots 06}a^{10}+\frac{11\cdots 85}{64\cdots 03}a^{9}-\frac{84\cdots 95}{12\cdots 06}a^{8}-\frac{40\cdots 65}{64\cdots 03}a^{7}+\frac{19\cdots 30}{64\cdots 03}a^{6}+\frac{32\cdots 17}{56\cdots 22}a^{5}-\frac{75\cdots 94}{28\cdots 61}a^{4}-\frac{79\cdots 43}{56\cdots 22}a^{3}-\frac{14\cdots 50}{122541950361907}a^{2}-\frac{65\cdots 87}{245083900723814}a+\frac{72\cdots 21}{245083900723814}$, $\frac{70\cdots 29}{12\cdots 06}a^{14}-\frac{314702514561712}{28\cdots 61}a^{13}-\frac{39\cdots 79}{12\cdots 06}a^{12}+\frac{18\cdots 15}{64\cdots 03}a^{11}+\frac{86\cdots 75}{12\cdots 06}a^{10}+\frac{70\cdots 97}{64\cdots 03}a^{9}-\frac{45\cdots 82}{64\cdots 03}a^{8}-\frac{49\cdots 09}{64\cdots 03}a^{7}+\frac{21\cdots 88}{64\cdots 03}a^{6}+\frac{36\cdots 83}{56\cdots 22}a^{5}-\frac{73\cdots 06}{28\cdots 61}a^{4}-\frac{44\cdots 61}{28\cdots 61}a^{3}-\frac{33\cdots 99}{245083900723814}a^{2}-\frac{76\cdots 39}{245083900723814}a+\frac{79\cdots 99}{245083900723814}$, $\frac{98\cdots 41}{12\cdots 06}a^{14}-\frac{651807138082563}{56\cdots 22}a^{13}-\frac{57\cdots 49}{12\cdots 06}a^{12}+\frac{12\cdots 88}{64\cdots 03}a^{11}+\frac{64\cdots 41}{64\cdots 03}a^{10}+\frac{71\cdots 75}{12\cdots 06}a^{9}-\frac{68\cdots 98}{64\cdots 03}a^{8}-\frac{96\cdots 95}{64\cdots 03}a^{7}+\frac{30\cdots 70}{64\cdots 03}a^{6}+\frac{31\cdots 13}{28\cdots 61}a^{5}-\frac{15\cdots 03}{56\cdots 22}a^{4}-\frac{73\cdots 27}{28\cdots 61}a^{3}-\frac{58\cdots 41}{245083900723814}a^{2}-\frac{69\cdots 32}{122541950361907}a+\frac{14\cdots 53}{245083900723814}$, $\frac{43\cdots 76}{64\cdots 03}a^{14}-\frac{701901406216755}{56\cdots 22}a^{13}-\frac{49\cdots 97}{12\cdots 06}a^{12}+\frac{36\cdots 31}{12\cdots 06}a^{11}+\frac{10\cdots 47}{12\cdots 06}a^{10}+\frac{32\cdots 45}{12\cdots 06}a^{9}-\frac{58\cdots 67}{64\cdots 03}a^{8}-\frac{69\cdots 31}{64\cdots 03}a^{7}+\frac{53\cdots 05}{12\cdots 06}a^{6}+\frac{48\cdots 03}{56\cdots 22}a^{5}-\frac{17\cdots 35}{56\cdots 22}a^{4}-\frac{58\cdots 60}{28\cdots 61}a^{3}-\frac{21\cdots 70}{122541950361907}a^{2}-\frac{49\cdots 66}{122541950361907}a+\frac{10\cdots 09}{245083900723814}$, $\frac{71\cdots 29}{64\cdots 03}a^{14}-\frac{12\cdots 57}{56\cdots 22}a^{13}-\frac{80\cdots 71}{12\cdots 06}a^{12}+\frac{36\cdots 62}{64\cdots 03}a^{11}+\frac{89\cdots 18}{64\cdots 03}a^{10}+\frac{14\cdots 43}{64\cdots 03}a^{9}-\frac{94\cdots 62}{64\cdots 03}a^{8}-\frac{20\cdots 39}{12\cdots 06}a^{7}+\frac{43\cdots 82}{64\cdots 03}a^{6}+\frac{37\cdots 00}{28\cdots 61}a^{5}-\frac{15\cdots 90}{28\cdots 61}a^{4}-\frac{91\cdots 66}{28\cdots 61}a^{3}-\frac{67\cdots 23}{245083900723814}a^{2}-\frac{15\cdots 51}{245083900723814}a+\frac{79\cdots 98}{122541950361907}$, $\frac{58\cdots 83}{12\cdots 06}a^{14}-\frac{217268964363708}{28\cdots 61}a^{13}-\frac{33\cdots 45}{12\cdots 06}a^{12}+\frac{20\cdots 99}{12\cdots 06}a^{11}+\frac{37\cdots 80}{64\cdots 03}a^{10}+\frac{31\cdots 59}{12\cdots 06}a^{9}-\frac{39\cdots 61}{64\cdots 03}a^{8}-\frac{10\cdots 01}{12\cdots 06}a^{7}+\frac{36\cdots 79}{12\cdots 06}a^{6}+\frac{17\cdots 20}{28\cdots 61}a^{5}-\frac{44\cdots 31}{245083900723814}a^{4}-\frac{41\cdots 54}{28\cdots 61}a^{3}-\frac{16\cdots 13}{122541950361907}a^{2}-\frac{38\cdots 53}{122541950361907}a+\frac{38\cdots 39}{122541950361907}$, $\frac{10\cdots 27}{12\cdots 06}a^{14}-\frac{926761243064371}{56\cdots 22}a^{13}-\frac{55\cdots 47}{12\cdots 06}a^{12}+\frac{54\cdots 13}{12\cdots 06}a^{11}+\frac{61\cdots 61}{64\cdots 03}a^{10}+\frac{68\cdots 15}{64\cdots 03}a^{9}-\frac{13\cdots 27}{12\cdots 06}a^{8}-\frac{67\cdots 19}{64\cdots 03}a^{7}+\frac{60\cdots 21}{12\cdots 06}a^{6}+\frac{25\cdots 72}{28\cdots 61}a^{5}-\frac{11\cdots 86}{28\cdots 61}a^{4}-\frac{12\cdots 21}{56\cdots 22}a^{3}-\frac{45\cdots 93}{245083900723814}a^{2}-\frac{10\cdots 35}{245083900723814}a+\frac{10\cdots 91}{245083900723814}$, $\frac{10\cdots 09}{12\cdots 06}a^{14}-\frac{872665231557377}{56\cdots 22}a^{13}-\frac{56\cdots 89}{12\cdots 06}a^{12}+\frac{49\cdots 49}{12\cdots 06}a^{11}+\frac{12\cdots 69}{12\cdots 06}a^{10}+\frac{11\cdots 00}{64\cdots 03}a^{9}-\frac{66\cdots 30}{64\cdots 03}a^{8}-\frac{14\cdots 85}{12\cdots 06}a^{7}+\frac{61\cdots 67}{12\cdots 06}a^{6}+\frac{52\cdots 23}{56\cdots 22}a^{5}-\frac{11\cdots 07}{28\cdots 61}a^{4}-\frac{64\cdots 80}{28\cdots 61}a^{3}-\frac{23\cdots 93}{122541950361907}a^{2}-\frac{10\cdots 83}{245083900723814}a+\frac{54\cdots 70}{122541950361907}$
|
| |
| Regulator: | \( 181222525.173 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{15}\cdot(2\pi)^{0}\cdot 181222525.173 \cdot 1}{2\cdot\sqrt{138622929316925604547946697}}\cr\approx \mathstrut & 0.252182288159 \end{aligned}\] (assuming GRH)
Galois group
$C_3^4:C_{10}$ (as 15T33):
| A solvable group of order 810 |
| The 18 conjugacy class representatives for $C_3^4:C_{10}$ |
| Character table for $C_3^4:C_{10}$ |
Intermediate fields
| \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 45 siblings: | data not computed |
| Minimal sibling: | 15.15.138622929316925604547946697.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.5.0.1}{5} }^{3}$ | R | ${\href{/padicField/5.10.0.1}{10} }{,}\,{\href{/padicField/5.5.0.1}{5} }$ | ${\href{/padicField/7.10.0.1}{10} }{,}\,{\href{/padicField/7.5.0.1}{5} }$ | R | ${\href{/padicField/13.10.0.1}{10} }{,}\,{\href{/padicField/13.5.0.1}{5} }$ | ${\href{/padicField/17.5.0.1}{5} }^{3}$ | ${\href{/padicField/19.10.0.1}{10} }{,}\,{\href{/padicField/19.5.0.1}{5} }$ | R | ${\href{/padicField/29.5.0.1}{5} }^{3}$ | ${\href{/padicField/31.5.0.1}{5} }^{3}$ | ${\href{/padicField/37.5.0.1}{5} }^{3}$ | ${\href{/padicField/41.5.0.1}{5} }^{3}$ | ${\href{/padicField/43.2.0.1}{2} }^{5}{,}\,{\href{/padicField/43.1.0.1}{1} }^{5}$ | ${\href{/padicField/47.10.0.1}{10} }{,}\,{\href{/padicField/47.5.0.1}{5} }$ | ${\href{/padicField/53.10.0.1}{10} }{,}\,{\href{/padicField/53.5.0.1}{5} }$ | ${\href{/padicField/59.10.0.1}{10} }{,}\,{\href{/padicField/59.5.0.1}{5} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.5.3.15a27.1 | $x^{15} + 6 x^{11} + 3 x^{10} + 6 x^{9} + 6 x^{8} + 12 x^{7} + 18 x^{6} + 18 x^{5} + 18 x^{4} + 14 x^{3} + 24 x^{2} + 18 x + 7$ | $3$ | $5$ | $15$ | 15T33 | $$[\frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}]_{2}^{5}$$ |
|
\(11\)
| 11.1.5.4a1.1 | $x^{5} + 11$ | $5$ | $1$ | $4$ | $C_5$ | $$[\ ]_{5}$$ |
| 11.1.10.9a1.10 | $x^{10} + 110$ | $10$ | $1$ | $9$ | $C_{10}$ | $$[\ ]_{10}$$ | |
|
\(23\)
| $\Q_{23}$ | $x + 18$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{23}$ | $x + 18$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{23}$ | $x + 18$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 23.2.1.0a1.1 | $x^{2} + 21 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 23.2.1.0a1.1 | $x^{2} + 21 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 23.2.1.0a1.1 | $x^{2} + 21 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 23.1.3.2a1.1 | $x^{3} + 23$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 23.1.3.2a1.1 | $x^{3} + 23$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |