Show commands: Magma
Group invariants
Abstract group: | $C_3^4:C_{10}$ |
| |
Order: | $810=2 \cdot 3^{4} \cdot 5$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $15$ |
| |
Transitive number $t$: | $33$ |
| |
CHM label: | $[3^{4}:2]5$ | ||
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,6,11)(4,14,9)$, $(1,11)(2,7)(4,14)(5,10)(8,13)$, $(1,4,7,10,13)(2,5,8,11,14)(3,6,9,12,15)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $5$: $C_5$ $10$: $C_{10}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 5: $C_5$
Low degree siblings
15T33 x 7, 30T190 x 8, 45T118 x 2, 45T119 x 16, 45T120 x 8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{15}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{5},1^{5}$ | $81$ | $2$ | $5$ | $( 1, 6)( 2,12)( 3, 8)( 4,14)(10,15)$ |
3A | $3^{4},1^{3}$ | $10$ | $3$ | $8$ | $( 1,11, 6)( 2,12, 7)( 4, 9,14)( 5,10,15)$ |
3B | $3^{3},1^{6}$ | $10$ | $3$ | $6$ | $( 2,12, 7)( 4,14, 9)( 5,15,10)$ |
3C | $3^{3},1^{6}$ | $10$ | $3$ | $6$ | $( 2,12, 7)( 3,13, 8)( 4,14, 9)$ |
3D | $3^{5}$ | $10$ | $3$ | $10$ | $( 1, 6,11)( 2, 7,12)( 3, 8,13)( 4, 9,14)( 5,15,10)$ |
3E | $3^{4},1^{3}$ | $10$ | $3$ | $8$ | $( 1,11, 6)( 2,12, 7)( 3, 8,13)( 5,10,15)$ |
3F | $3^{4},1^{3}$ | $10$ | $3$ | $8$ | $( 2, 7,12)( 3,13, 8)( 4, 9,14)( 5,15,10)$ |
3G | $3^{2},1^{9}$ | $10$ | $3$ | $4$ | $( 2, 7,12)( 4,14, 9)$ |
3H | $3^{2},1^{9}$ | $10$ | $3$ | $4$ | $( 1, 6,11)( 2,12, 7)$ |
5A1 | $5^{3}$ | $81$ | $5$ | $12$ | $( 1, 3,10,12,14)( 2, 4, 6, 8,15)( 5, 7, 9,11,13)$ |
5A-1 | $5^{3}$ | $81$ | $5$ | $12$ | $( 1,14,12,10, 3)( 2,15, 8, 6, 4)( 5,13,11, 9, 7)$ |
5A2 | $5^{3}$ | $81$ | $5$ | $12$ | $( 1,10,14, 3,12)( 2, 6,15, 4, 8)( 5, 9,13, 7,11)$ |
5A-2 | $5^{3}$ | $81$ | $5$ | $12$ | $( 1,12, 3,14,10)( 2, 8, 4,15, 6)( 5,11, 7,13, 9)$ |
10A1 | $10,5$ | $81$ | $10$ | $13$ | $( 1, 2, 3, 4,10, 6,12, 8,14,15)( 5,11, 7,13, 9)$ |
10A-1 | $10,5$ | $81$ | $10$ | $13$ | $( 1,15,14, 8,12, 6,10, 4, 3, 2)( 5, 9,13, 7,11)$ |
10A3 | $10,5$ | $81$ | $10$ | $13$ | $( 1, 4,12,15, 3, 6,14, 2,10, 8)( 5,13,11, 9, 7)$ |
10A-3 | $10,5$ | $81$ | $10$ | $13$ | $( 1, 8,10, 2,14, 6, 3,15,12, 4)( 5, 7, 9,11,13)$ |
Malle's constant $a(G)$: $1/4$
Character table
1A | 2A | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 5A1 | 5A-1 | 5A2 | 5A-2 | 10A1 | 10A-1 | 10A3 | 10A-3 | ||
Size | 1 | 81 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 81 | 81 | 81 | 81 | 81 | 81 | 81 | 81 | |
2 P | 1A | 1A | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 5A2 | 5A-2 | 5A-1 | 5A1 | 5A1 | 5A-1 | 5A-2 | 5A2 | |
3 P | 1A | 2A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 5A-2 | 5A2 | 5A1 | 5A-1 | 10A3 | 10A-3 | 10A-1 | 10A1 | |
5 P | 1A | 2A | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | |
Type | |||||||||||||||||||
810.102.1a | R | ||||||||||||||||||
810.102.1b | R | ||||||||||||||||||
810.102.1c1 | C | ||||||||||||||||||
810.102.1c2 | C | ||||||||||||||||||
810.102.1c3 | C | ||||||||||||||||||
810.102.1c4 | C | ||||||||||||||||||
810.102.1d1 | C | ||||||||||||||||||
810.102.1d2 | C | ||||||||||||||||||
810.102.1d3 | C | ||||||||||||||||||
810.102.1d4 | C | ||||||||||||||||||
810.102.10a | R | ||||||||||||||||||
810.102.10b | R | ||||||||||||||||||
810.102.10c | R | ||||||||||||||||||
810.102.10d | R | ||||||||||||||||||
810.102.10e | R | ||||||||||||||||||
810.102.10f | R | ||||||||||||||||||
810.102.10g | R | ||||||||||||||||||
810.102.10h | R |
Regular extensions
Data not computed