Properties

Label 11.1.5.4a1.1
Base \(\Q_{11}\)
Degree \(5\)
e \(5\)
f \(1\)
c \(4\)
Galois group $C_5$ (as 5T1)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{5} + 11\) Copy content Toggle raw display

Invariants

Base field: $\Q_{11}$
Degree $d$: $5$
Ramification index $e$: $5$
Residue field degree $f$: $1$
Discriminant exponent $c$: $4$
Discriminant root field: $\Q_{11}$
Root number: $1$
$\Aut(K/\Q_{11})$ $=$$\Gal(K/\Q_{11})$: $C_5$
This field is Galois and abelian over $\Q_{11}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$10 = (11 - 1)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 11 }$.

Canonical tower

Unramified subfield:$\Q_{11}$
Relative Eisenstein polynomial: \( x^{5} + 11 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^4 + 5 z^3 + 10 z^2 + 10 z + 5$
Associated inertia:$1$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $5$
Galois group: $C_5$ (as 5T1)
Inertia group: $C_5$ (as 5T1)
Wild inertia group: $C_1$
Galois unramified degree: $1$
Galois tame degree: $5$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.8$
Galois splitting model:$x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1$