Defining polynomial
\(x^{5} + 11\)
|
Invariants
Base field: | $\Q_{11}$ |
Degree $d$: | $5$ |
Ramification index $e$: | $5$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $4$ |
Discriminant root field: | $\Q_{11}$ |
Root number: | $1$ |
$\Aut(K/\Q_{11})$ $=$$\Gal(K/\Q_{11})$: | $C_5$ |
This field is Galois and abelian over $\Q_{11}.$ | |
Visible Artin slopes: | $[\ ]$ |
Visible Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Jump set: | undefined |
Roots of unity: | $10 = (11 - 1)$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q_{ 11 }$. |
Canonical tower
Unramified subfield: | $\Q_{11}$ |
Relative Eisenstein polynomial: |
\( x^{5} + 11 \)
|
Ramification polygon
Residual polynomials: | $z^4 + 5 z^3 + 10 z^2 + 10 z + 5$ |
Associated inertia: | $1$ |
Indices of inseparability: | $[0]$ |
Invariants of the Galois closure
Galois degree: | $5$ |
Galois group: | $C_5$ (as 5T1) |
Inertia group: | $C_5$ (as 5T1) |
Wild inertia group: | $C_1$ |
Galois unramified degree: | $1$ |
Galois tame degree: | $5$ |
Galois Artin slopes: | $[\ ]$ |
Galois Swan slopes: | $[\ ]$ |
Galois mean slope: | $0.8$ |
Galois splitting model: | $x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1$ |