Normalized defining polynomial
\( x^{15} - 27 x^{13} - 4 x^{12} + 252 x^{11} + 60 x^{10} - 976 x^{9} - 288 x^{8} + 1473 x^{7} + 384 x^{6} - 765 x^{5} - 168 x^{4} + 150 x^{3} + 27 x^{2} - 9 x - 1 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[15, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10943023107606534329121=3^{20}\cdot 11^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(99=3^{2}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{99}(64,·)$, $\chi_{99}(1,·)$, $\chi_{99}(34,·)$, $\chi_{99}(67,·)$, $\chi_{99}(4,·)$, $\chi_{99}(37,·)$, $\chi_{99}(70,·)$, $\chi_{99}(97,·)$, $\chi_{99}(16,·)$, $\chi_{99}(49,·)$, $\chi_{99}(82,·)$, $\chi_{99}(25,·)$, $\chi_{99}(58,·)$, $\chi_{99}(91,·)$, $\chi_{99}(31,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{164276239249} a^{14} + \frac{32330953608}{164276239249} a^{13} + \frac{74618147066}{164276239249} a^{12} - \frac{7544382288}{164276239249} a^{11} - \frac{50914705859}{164276239249} a^{10} + \frac{3571539703}{164276239249} a^{9} - \frac{62434792324}{164276239249} a^{8} - \frac{80812000837}{164276239249} a^{7} - \frac{13866789831}{164276239249} a^{6} - \frac{48159141661}{164276239249} a^{5} + \frac{60633542357}{164276239249} a^{4} - \frac{855515036}{164276239249} a^{3} - \frac{76391229334}{164276239249} a^{2} + \frac{263409277}{164276239249} a + \frac{11630783081}{164276239249}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 967645.576239 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 15 |
| The 15 conjugacy class representatives for $C_{15}$ |
| Character table for $C_{15}$ |
Intermediate fields
| \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | R | $15$ | $15$ | R | $15$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{5}$ | $15$ | $15$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{5}$ | $15$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 11 | Data not computed | ||||||