Group action invariants
| Degree $n$ : | $15$ | |
| Transitive number $t$ : | $1$ | |
| Group : | $C_{15}$ | |
| CHM label : | $C(15)=5[x]3$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $1$ | |
| Generators: | (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) | |
| $|\Aut(F/K)|$: | $15$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 3: $C_3$ 5: $C_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Degree 5: $C_5$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 15 $ | $1$ | $15$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15)$ |
| $ 15 $ | $1$ | $15$ | $( 1, 3, 5, 7, 9,11,13,15, 2, 4, 6, 8,10,12,14)$ |
| $ 5, 5, 5 $ | $1$ | $5$ | $( 1, 4, 7,10,13)( 2, 5, 8,11,14)( 3, 6, 9,12,15)$ |
| $ 15 $ | $1$ | $15$ | $( 1, 5, 9,13, 2, 6,10,14, 3, 7,11,15, 4, 8,12)$ |
| $ 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 6,11)( 2, 7,12)( 3, 8,13)( 4, 9,14)( 5,10,15)$ |
| $ 5, 5, 5 $ | $1$ | $5$ | $( 1, 7,13, 4,10)( 2, 8,14, 5,11)( 3, 9,15, 6,12)$ |
| $ 15 $ | $1$ | $15$ | $( 1, 8,15, 7,14, 6,13, 5,12, 4,11, 3,10, 2, 9)$ |
| $ 15 $ | $1$ | $15$ | $( 1, 9, 2,10, 3,11, 4,12, 5,13, 6,14, 7,15, 8)$ |
| $ 5, 5, 5 $ | $1$ | $5$ | $( 1,10, 4,13, 7)( 2,11, 5,14, 8)( 3,12, 6,15, 9)$ |
| $ 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1,11, 6)( 2,12, 7)( 3,13, 8)( 4,14, 9)( 5,15,10)$ |
| $ 15 $ | $1$ | $15$ | $( 1,12, 8, 4,15,11, 7, 3,14,10, 6, 2,13, 9, 5)$ |
| $ 5, 5, 5 $ | $1$ | $5$ | $( 1,13,10, 7, 4)( 2,14,11, 8, 5)( 3,15,12, 9, 6)$ |
| $ 15 $ | $1$ | $15$ | $( 1,14,12,10, 8, 6, 4, 2,15,13,11, 9, 7, 5, 3)$ |
| $ 15 $ | $1$ | $15$ | $( 1,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)$ |
Group invariants
| Order: | $15=3 \cdot 5$ | |
| Cyclic: | Yes | |
| Abelian: | Yes | |
| Solvable: | Yes | |
| GAP id: | [15, 1] |
| Character table: |
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1a 15a 15b 5a 15c 3a 5b 15d 15e 5c 3b 15f 5d 15g 15h
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 A /A 1 A /A 1 A /A 1 A /A 1 A /A
X.3 1 /A A 1 /A A 1 /A A 1 /A A 1 /A A
X.4 1 B E /E /B 1 B E /E /B 1 B E /E /B
X.5 1 C G /E /D /A B F /F /B A D E /G /C
X.6 1 D F /E /C A B G /G /B /A C E /F /D
X.7 1 E /B B /E 1 E /B B /E 1 E /B B /E
X.8 1 F /C B /G /A E /D D /E A G /B C /F
X.9 1 G /D B /F A E /C C /E /A F /B D /G
X.10 1 /E B /B E 1 /E B /B E 1 /E B /B E
X.11 1 /G D /B F /A /E C /C E A /F B /D G
X.12 1 /F C /B G A /E D /D E /A /G B /C F
X.13 1 /B /E E B 1 /B /E E B 1 /B /E E B
X.14 1 /D /F E C /A /B /G G B A /C /E F D
X.15 1 /C /G E D A /B /F F B /A /D /E G C
A = E(3)
= (-1+Sqrt(-3))/2 = b3
B = E(5)^2
C = E(15)^11
D = E(15)
E = E(5)^4
F = E(15)^2
G = E(15)^7
|