Normalized defining polynomial
\( x^{14} - 3 x^{13} - 5 x^{12} + 31 x^{11} - 50 x^{10} + 127 x^{9} - 55 x^{8} + 1003 x^{7} - 5194 x^{6} + \cdots + 319344 \)
Invariants
| Degree: | $14$ |
| |
| Signature: | $[2, 6]$ |
| |
| Discriminant: |
\(282346132215490560000000000\)
\(\medspace = 2^{20}\cdot 3^{14}\cdot 5^{10}\cdot 7^{8}\)
|
| |
| Root discriminant: | \(77.51\) |
| |
| Galois root discriminant: | $2^{11/4}3^{121/54}5^{23/24}7^{19/20}\approx 2342.2158414001506$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\), \(7\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3}a^{10}+\frac{1}{3}a^{7}-\frac{1}{3}a^{4}-\frac{1}{3}a$, $\frac{1}{3}a^{11}+\frac{1}{3}a^{8}-\frac{1}{3}a^{5}-\frac{1}{3}a^{2}$, $\frac{1}{63}a^{12}-\frac{2}{21}a^{11}+\frac{2}{63}a^{10}+\frac{4}{9}a^{9}-\frac{10}{21}a^{8}-\frac{4}{9}a^{7}-\frac{19}{63}a^{6}-\frac{2}{7}a^{5}-\frac{17}{63}a^{4}-\frac{1}{63}a^{3}-\frac{10}{21}a^{2}-\frac{11}{63}a-\frac{2}{21}$, $\frac{1}{58\cdots 20}a^{13}+\frac{83\cdots 47}{19\cdots 40}a^{12}-\frac{28\cdots 83}{83\cdots 60}a^{11}+\frac{68\cdots 07}{58\cdots 20}a^{10}+\frac{45\cdots 61}{32\cdots 40}a^{9}-\frac{12\cdots 01}{58\cdots 20}a^{8}-\frac{67\cdots 19}{58\cdots 20}a^{7}+\frac{53\cdots 49}{19\cdots 40}a^{6}-\frac{15\cdots 03}{29\cdots 60}a^{5}-\frac{38\cdots 01}{58\cdots 20}a^{4}+\frac{13\cdots 63}{27\cdots 20}a^{3}+\frac{37\cdots 27}{83\cdots 60}a^{2}+\frac{35\cdots 09}{38\cdots 08}a-\frac{22\cdots 21}{16\cdots 20}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{14\cdots 37}{58\cdots 20}a^{13}+\frac{35\cdots 59}{19\cdots 40}a^{12}+\frac{31\cdots 29}{83\cdots 60}a^{11}+\frac{25\cdots 39}{58\cdots 20}a^{10}+\frac{88\cdots 51}{96\cdots 20}a^{9}-\frac{21\cdots 57}{58\cdots 20}a^{8}+\frac{10\cdots 17}{58\cdots 20}a^{7}+\frac{10\cdots 71}{64\cdots 80}a^{6}+\frac{17\cdots 29}{29\cdots 60}a^{5}-\frac{67\cdots 97}{58\cdots 20}a^{4}+\frac{83\cdots 11}{27\cdots 20}a^{3}+\frac{71\cdots 39}{83\cdots 60}a^{2}-\frac{29\cdots 53}{12\cdots 36}a+\frac{41\cdots 43}{16\cdots 20}$, $\frac{27\cdots 35}{16\cdots 32}a^{13}-\frac{52\cdots 81}{16\cdots 32}a^{12}-\frac{21\cdots 67}{16\cdots 32}a^{11}+\frac{59\cdots 45}{16\cdots 32}a^{10}-\frac{15\cdots 01}{83\cdots 16}a^{9}+\frac{24\cdots 85}{16\cdots 32}a^{8}+\frac{49\cdots 45}{55\cdots 44}a^{7}+\frac{25\cdots 49}{16\cdots 32}a^{6}-\frac{58\cdots 93}{83\cdots 16}a^{5}+\frac{19\cdots 61}{16\cdots 32}a^{4}+\frac{48\cdots 09}{16\cdots 32}a^{3}-\frac{29\cdots 25}{16\cdots 32}a^{2}+\frac{59\cdots 01}{16\cdots 32}a-\frac{24\cdots 93}{13\cdots 36}$, $\frac{52\cdots 71}{58\cdots 20}a^{13}+\frac{28\cdots 17}{19\cdots 40}a^{12}-\frac{18\cdots 73}{83\cdots 60}a^{11}+\frac{57\cdots 57}{58\cdots 20}a^{10}+\frac{12\cdots 91}{32\cdots 40}a^{9}-\frac{13\cdots 51}{58\cdots 20}a^{8}-\frac{12\cdots 09}{58\cdots 20}a^{7}+\frac{78\cdots 99}{19\cdots 40}a^{6}+\frac{34\cdots 67}{29\cdots 60}a^{5}-\frac{19\cdots 91}{58\cdots 20}a^{4}-\frac{11\cdots 67}{27\cdots 20}a^{3}+\frac{27\cdots 17}{83\cdots 60}a^{2}-\frac{19\cdots 45}{38\cdots 08}a+\frac{56\cdots 09}{16\cdots 20}$, $\frac{14\cdots 93}{12\cdots 36}a^{13}+\frac{24\cdots 61}{11\cdots 24}a^{12}-\frac{13\cdots 07}{18\cdots 48}a^{11}-\frac{14\cdots 89}{11\cdots 24}a^{10}-\frac{21\cdots 07}{58\cdots 12}a^{9}-\frac{83\cdots 35}{38\cdots 08}a^{8}+\frac{19\cdots 21}{11\cdots 24}a^{7}+\frac{20\cdots 19}{11\cdots 24}a^{6}+\frac{24\cdots 15}{19\cdots 04}a^{5}+\frac{53\cdots 31}{11\cdots 24}a^{4}+\frac{61\cdots 89}{16\cdots 32}a^{3}-\frac{42\cdots 65}{18\cdots 48}a^{2}+\frac{20\cdots 43}{11\cdots 24}a+\frac{79\cdots 49}{96\cdots 52}$, $\frac{51\cdots 37}{29\cdots 56}a^{13}-\frac{17\cdots 87}{29\cdots 56}a^{12}-\frac{15\cdots 71}{41\cdots 08}a^{11}+\frac{59\cdots 03}{32\cdots 84}a^{10}-\frac{10\cdots 09}{14\cdots 78}a^{9}-\frac{32\cdots 57}{29\cdots 56}a^{8}+\frac{14\cdots 61}{29\cdots 56}a^{7}-\frac{32\cdots 25}{29\cdots 56}a^{6}-\frac{10\cdots 29}{14\cdots 78}a^{5}+\frac{84\cdots 41}{96\cdots 52}a^{4}-\frac{85\cdots 95}{41\cdots 08}a^{3}+\frac{32\cdots 43}{41\cdots 08}a^{2}+\frac{16\cdots 67}{29\cdots 56}a-\frac{22\cdots 16}{24\cdots 63}$, $\frac{10\cdots 41}{58\cdots 20}a^{13}-\frac{10\cdots 39}{58\cdots 20}a^{12}+\frac{51\cdots 77}{83\cdots 60}a^{11}-\frac{42\cdots 51}{19\cdots 40}a^{10}-\frac{19\cdots 91}{29\cdots 60}a^{9}+\frac{19\cdots 39}{58\cdots 20}a^{8}-\frac{53\cdots 79}{58\cdots 20}a^{7}+\frac{63\cdots 07}{58\cdots 20}a^{6}+\frac{59\cdots 77}{29\cdots 60}a^{5}-\frac{87\cdots 49}{64\cdots 80}a^{4}+\frac{39\cdots 27}{11\cdots 80}a^{3}-\frac{57\cdots 59}{11\cdots 80}a^{2}+\frac{48\cdots 91}{11\cdots 24}a-\frac{83\cdots 63}{48\cdots 60}$, $\frac{15\cdots 15}{29\cdots 56}a^{13}-\frac{45\cdots 93}{29\cdots 56}a^{12}-\frac{27\cdots 65}{41\cdots 08}a^{11}+\frac{47\cdots 47}{96\cdots 52}a^{10}-\frac{69\cdots 31}{14\cdots 78}a^{9}-\frac{94\cdots 75}{29\cdots 56}a^{8}-\frac{15\cdots 97}{29\cdots 56}a^{7}+\frac{15\cdots 05}{29\cdots 56}a^{6}-\frac{47\cdots 67}{14\cdots 78}a^{5}+\frac{31\cdots 31}{96\cdots 52}a^{4}+\frac{53\cdots 35}{41\cdots 08}a^{3}-\frac{30\cdots 51}{41\cdots 08}a^{2}+\frac{31\cdots 61}{29\cdots 56}a-\frac{21\cdots 74}{24\cdots 63}$
|
| |
| Regulator: | \( 874877246.508 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{6}\cdot 874877246.508 \cdot 1}{2\cdot\sqrt{282346132215490560000000000}}\cr\approx \mathstrut & 6.40715759150 \end{aligned}\] (assuming GRH)
Galois group
| A non-solvable group of order 43589145600 |
| The 72 conjugacy class representatives for $A_{14}$ |
| Character table for $A_{14}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/padicField/11.12.0.1}{12} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.6.0.1}{6} }$ | ${\href{/padicField/17.13.0.1}{13} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.7.0.1}{7} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.7.0.1}{7} }{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.11.0.1}{11} }{,}\,{\href{/padicField/31.3.0.1}{3} }$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.5.0.1}{5} }{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.13.0.1}{13} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.9.0.1}{9} }{,}\,{\href{/padicField/43.5.0.1}{5} }$ | ${\href{/padicField/47.7.0.1}{7} }{,}\,{\href{/padicField/47.5.0.1}{5} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.9.0.1}{9} }{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.13.0.1}{13} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.1.0a1.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 2.4.1.0a1.1 | $x^{4} + x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 2.2.4.20a1.15 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 47 x^{4} + 60 x^{3} + 54 x^{2} + 32 x + 11$ | $4$ | $2$ | $20$ | $D_4\times C_2$ | $$[2, 3, \frac{7}{2}]^{2}$$ | |
|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 3.1.3.3a1.2 | $x^{3} + 6 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ | |
| 3.1.6.11a2.6 | $x^{6} + 18 x^{2} + 9 x + 6$ | $6$ | $1$ | $11$ | $S_3^2$ | $$[2, \frac{5}{2}]_{2}^{2}$$ | |
|
\(5\)
| $\Q_{5}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 5.1.2.1a1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 5.1.3.2a1.1 | $x^{3} + 5$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 5.1.8.7a1.4 | $x^{8} + 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $$[\ ]_{8}^{2}$$ | |
|
\(7\)
| $\Q_{7}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 7.2.1.0a1.1 | $x^{2} + 6 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 7.1.4.3a1.2 | $x^{4} + 21$ | $4$ | $1$ | $3$ | $D_{4}$ | $$[\ ]_{4}^{2}$$ | |
| 7.1.5.4a1.1 | $x^{5} + 7$ | $5$ | $1$ | $4$ | $F_5$ | $$[\ ]_{5}^{4}$$ |