Properties

Label 14T62
Order \(43589145600\)
n \(14\)
Cyclic No
Abelian No
Solvable No
Primitive Yes
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $14$
Transitive number $t$ :  $62$
CHM label :  $A14$
Parity:  $1$
Primitive:  Yes
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,2,3), (1,2)(3,4,5,6,7,8,9,10,11,12,13,14)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

None

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 7: None

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 72 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $43589145600=2^{10} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.