Normalized defining polynomial
\( x^{12} - 4x^{10} - 3372x^{8} - 277432x^{6} + 2870368x^{4} + 325351584x^{2} + 9308390400 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[4, 4]$ |
| |
| Discriminant: |
\(8148798716588303489414930185744360144896\)
\(\medspace = 2^{20}\cdot 3^{6}\cdot 7^{10}\cdot 181^{10}\)
|
| |
| Root discriminant: | \(2117.99\) |
| |
| Galois root discriminant: | $2^{11/6}3^{1/2}7^{5/6}181^{5/6}\approx 2377.366462449021$ | ||
| Ramified primes: |
\(2\), \(3\), \(7\), \(181\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2}a^{2}$, $\frac{1}{2}a^{3}$, $\frac{1}{4}a^{4}$, $\frac{1}{12}a^{5}-\frac{1}{6}a^{3}+\frac{1}{3}a$, $\frac{1}{24}a^{6}-\frac{1}{12}a^{4}+\frac{1}{6}a^{2}$, $\frac{1}{96}a^{7}+\frac{1}{12}a$, $\frac{1}{1152}a^{8}-\frac{1}{48}a^{6}+\frac{1}{24}a^{4}-\frac{11}{144}a^{2}$, $\frac{1}{771840}a^{9}-\frac{77}{16080}a^{7}-\frac{19}{1072}a^{5}+\frac{3421}{96480}a^{3}+\frac{1571}{4020}a$, $\frac{1}{16371640258560}a^{10}-\frac{2558892983}{8185820129280}a^{8}-\frac{586607507}{34107583872}a^{6}-\frac{242278253039}{2046455032320}a^{4}+\frac{197111645377}{1023227516160}a^{2}+\frac{3229235}{10605592}$, $\frac{1}{49114920775680}a^{11}-\frac{13550903}{24557460387840}a^{9}-\frac{347981687}{102322751616}a^{7}-\frac{249914279279}{6139365096960}a^{5}+\frac{718906771777}{3069682548480}a^{3}+\frac{245524123}{2131723992}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{3}\times C_{6}\times C_{6}$, which has order $108$ (assuming GRH) |
| |
| Narrow class group: | $C_{6}\times C_{6}\times C_{12}$, which has order $432$ (assuming GRH) |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{581}{306968254848}a^{11}-\frac{67109}{767420637120}a^{9}-\frac{354223}{63951719760}a^{7}-\frac{11903563}{38371031856}a^{5}+\frac{3201903691}{95927579640}a^{3}+\frac{941480239}{2664654990}a-5$, $\frac{23115091657}{3069682548480}a^{11}-\frac{321319}{16482402}a^{10}+\frac{1002042751853}{1534841274240}a^{9}+\frac{46591255}{16482402}a^{8}+\frac{3077215906579}{127903439520}a^{7}-\frac{609542143}{1831378}a^{6}-\frac{136860543550297}{383710318560}a^{5}-\frac{10015834549}{8241201}a^{4}-\frac{79\cdots 47}{191855159280}a^{3}+\frac{1833765605086}{8241201}a^{2}-\frac{12\cdots 89}{1776436660}a+\frac{178502788453}{13667}$, $\frac{218443948441401}{1819071139840}a^{11}+\frac{731715761872835}{3274328051712}a^{10}-\frac{53\cdots 19}{1637164025856}a^{9}-\frac{35\cdots 73}{1637164025856}a^{8}-\frac{65\cdots 59}{170537919360}a^{7}-\frac{98850558384445}{34107583872}a^{6}-\frac{15\cdots 77}{682151677440}a^{5}-\frac{19\cdots 05}{409291006464}a^{4}+\frac{20\cdots 33}{204645503232}a^{3}+\frac{81\cdots 71}{204645503232}a^{2}+\frac{25\cdots 53}{10658619960}a-\frac{12\cdots 51}{10605592}$, $\frac{148031991163}{22460544}a^{11}-\frac{4546696871435}{11230272}a^{9}-\frac{18673178313847}{935856}a^{7}-\frac{15\cdots 17}{2807568}a^{5}+\frac{12\cdots 65}{1403784}a^{3}+\frac{12\cdots 17}{12998}a-10645372091451$, $\frac{67\cdots 23}{76742063712}a^{11}-\frac{66\cdots 47}{1023227516160}a^{10}+\frac{29\cdots 71}{767420637120}a^{9}+\frac{51\cdots 21}{511613758080}a^{8}-\frac{30\cdots 01}{127903439520}a^{7}+\frac{78\cdots 93}{2131723992}a^{6}-\frac{27\cdots 59}{9592757964}a^{5}+\frac{12\cdots 33}{127903439520}a^{4}+\frac{80\cdots 91}{95927579640}a^{3}-\frac{20\cdots 99}{63951719760}a^{2}+\frac{48\cdots 93}{5329309980}a-\frac{15\cdots 71}{1325699}$, $\frac{44\cdots 59}{1534841274240}a^{11}-\frac{10\cdots 17}{2728606709760}a^{10}+\frac{84\cdots 07}{1534841274240}a^{9}+\frac{25\cdots 51}{1364303354880}a^{8}-\frac{15\cdots 09}{63951719760}a^{7}+\frac{19\cdots 37}{17053791936}a^{6}-\frac{23\cdots 11}{191855159280}a^{5}-\frac{49\cdots 59}{113691946240}a^{4}+\frac{34\cdots 67}{191855159280}a^{3}-\frac{81\cdots 03}{56845973120}a^{2}+\frac{10\cdots 46}{1332327495}a-\frac{16\cdots 37}{5302796}$, $\frac{65\cdots 61}{12278730193920}a^{11}+\frac{47\cdots 43}{409291006464}a^{10}+\frac{16\cdots 23}{1227873019392}a^{9}-\frac{17\cdots 09}{204645503232}a^{8}+\frac{22\cdots 71}{127903439520}a^{7}-\frac{54\cdots 85}{4263447984}a^{6}+\frac{15\cdots 39}{1534841274240}a^{5}-\frac{45\cdots 21}{51161375808}a^{4}-\frac{63\cdots 93}{153484127424}a^{3}+\frac{43\cdots 67}{25580687904}a^{2}-\frac{10\cdots 63}{888218330}a-\frac{44\cdots 40}{1325699}$
|
| |
| Regulator: | \( 481614365859644.3 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{4}\cdot 481614365859644.3 \cdot 108}{2\cdot\sqrt{8148798716588303489414930185744360144896}}\cr\approx \mathstrut & 7.18432306565992 \end{aligned}\] (assuming GRH)
Galois group
$S_3\times D_6$ (as 12T37):
| A solvable group of order 72 |
| The 18 conjugacy class representatives for $S_3\times D_6$ |
| Character table for $S_3\times D_6$ |
Intermediate fields
| \(\Q(\sqrt{2534}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{3801}) \), \(\Q(\sqrt{6}, \sqrt{2534})\), 6.2.352619909717519556.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 36 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{4}{,}\,{\href{/padicField/5.1.0.1}{1} }^{4}$ | R | ${\href{/padicField/11.6.0.1}{6} }^{2}$ | ${\href{/padicField/13.6.0.1}{6} }^{2}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}$ | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{6}$ | ${\href{/padicField/23.2.0.1}{2} }^{4}{,}\,{\href{/padicField/23.1.0.1}{1} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{6}$ | ${\href{/padicField/31.2.0.1}{2} }^{6}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{6}$ | ${\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{6}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{4}{,}\,{\href{/padicField/53.1.0.1}{1} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.3a1.2 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ |
| 2.2.2.6a1.1 | $x^{4} + 2 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ | |
| 2.1.6.11a1.2 | $x^{6} + 10$ | $6$ | $1$ | $11$ | $D_{6}$ | $$[3]_{3}^{2}$$ | |
|
\(3\)
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(7\)
| 7.2.6.10a1.4 | $x^{12} + 36 x^{11} + 558 x^{10} + 4860 x^{9} + 26055 x^{8} + 88776 x^{7} + 192996 x^{6} + 266328 x^{5} + 234495 x^{4} + 131220 x^{3} + 45198 x^{2} + 8755 x + 757$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $$[\ ]_{6}^{2}$$ |
|
\(181\)
| 181.2.6.10a1.4 | $x^{12} + 1062 x^{11} + 469947 x^{10} + 110915280 x^{9} + 14726353155 x^{8} + 1043025098382 x^{7} + 30808510677349 x^{6} + 2086050196764 x^{5} + 58905412620 x^{4} + 887322240 x^{3} + 7519152 x^{2} + 42672 x + 27757$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $$[\ ]_{6}^{2}$$ |