Show commands: Magma
                    
            
Group invariants
| Abstract group: | $S_3\times D_6$ | 
     | |
| Order: | $72=2^{3} \cdot 3^{2}$ | 
     | |
| Cyclic: | no | 
     | |
| Abelian: | no | 
     | |
| Solvable: | yes | 
     | |
| Nilpotency class: | not nilpotent | 
     | 
Group action invariants
| Degree $n$: | $12$ | 
     | |
| Transitive number $t$: | $37$ | 
     | |
| CHM label: | $[3^{2}:2]E(4)$ | ||
| Parity: | $1$ | 
     | |
| Primitive: | no | 
     | |
| $\card{\Aut(F/K)}$: | $2$ | 
     | |
| Generators: | $(1,10)(2,5)(3,12)(4,7)(6,9)(8,11)$, $(1,5)(2,10)(4,8)(7,11)$, $(2,6,10)(4,8,12)$, $(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)$ | 
     | 
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ x 2 $8$: $C_2^3$ $12$: $D_{6}$ x 6 $24$: $S_3 \times C_2^2$ x 2 $36$: $S_3^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: None
Degree 4: $C_2^2$
Degree 6: $S_3^2$
Low degree siblings
12T37, 18T29 x 4, 24T73, 36T34 x 2, 36T40 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative | 
| 1A | $1^{12}$ | $1$ | $1$ | $0$ | $()$ | 
| 2A | $2^{6}$ | $1$ | $2$ | $6$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ | 
| 2B | $2^{6}$ | $3$ | $2$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)$ | 
| 2C | $2^{6}$ | $3$ | $2$ | $6$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ | 
| 2D | $2^{6}$ | $3$ | $2$ | $6$ | $( 1, 2)( 3,12)( 4,11)( 5,10)( 6, 9)( 7, 8)$ | 
| 2E | $2^{6}$ | $3$ | $2$ | $6$ | $( 1, 8)( 2, 7)( 3, 6)( 4, 5)( 9,12)(10,11)$ | 
| 2F | $2^{6}$ | $9$ | $2$ | $6$ | $( 1,11)( 2,12)( 3, 9)( 4,10)( 5, 7)( 6, 8)$ | 
| 2G | $2^{4},1^{4}$ | $9$ | $2$ | $4$ | $( 1, 9)( 3, 7)( 4,12)( 6,10)$ | 
| 3A | $3^{4}$ | $2$ | $3$ | $8$ | $( 1, 5, 9)( 2,10, 6)( 3, 7,11)( 4,12, 8)$ | 
| 3B | $3^{4}$ | $2$ | $3$ | $8$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ | 
| 3C | $3^{2},1^{6}$ | $4$ | $3$ | $4$ | $( 1, 9, 5)( 3,11, 7)$ | 
| 6A | $6^{2}$ | $2$ | $6$ | $10$ | $( 1, 3, 5, 7, 9,11)( 2,12,10, 8, 6, 4)$ | 
| 6B | $6^{2}$ | $2$ | $6$ | $10$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ | 
| 6C | $6,2^{3}$ | $4$ | $6$ | $8$ | $( 1,11, 9, 7, 5, 3)( 2, 8)( 4,10)( 6,12)$ | 
| 6D | $6^{2}$ | $6$ | $6$ | $10$ | $( 1, 6, 9, 2, 5,10)( 3, 8,11, 4, 7,12)$ | 
| 6E | $6^{2}$ | $6$ | $6$ | $10$ | $( 1, 4, 9,12, 5, 8)( 2, 7,10, 3, 6,11)$ | 
| 6F | $6^{2}$ | $6$ | $6$ | $10$ | $( 1,10, 9, 2, 5, 6)( 3, 8,11,12, 7, 4)$ | 
| 6G | $6^{2}$ | $6$ | $6$ | $10$ | $( 1,12, 5, 8, 9, 4)( 2, 3,10, 7, 6,11)$ | 
Malle's constant $a(G)$: $1/4$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 6A | 6B | 6C | 6D | 6E | 6F | 6G | ||
| Size | 1 | 1 | 3 | 3 | 3 | 3 | 9 | 9 | 2 | 2 | 4 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 3A | 3B | 3C | 3B | 3B | 3A | 3A | |
| 3 P | 1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 1A | 1A | 1A | 2A | 2A | 2A | 2B | 2C | 2D | 2E | |
| Type | |||||||||||||||||||
| 72.46.1a | R | ||||||||||||||||||
| 72.46.1b | R | ||||||||||||||||||
| 72.46.1c | R | ||||||||||||||||||
| 72.46.1d | R | ||||||||||||||||||
| 72.46.1e | R | ||||||||||||||||||
| 72.46.1f | R | ||||||||||||||||||
| 72.46.1g | R | ||||||||||||||||||
| 72.46.1h | R | ||||||||||||||||||
| 72.46.2a | R | ||||||||||||||||||
| 72.46.2b | R | ||||||||||||||||||
| 72.46.2c | R | ||||||||||||||||||
| 72.46.2d | R | ||||||||||||||||||
| 72.46.2e | R | ||||||||||||||||||
| 72.46.2f | R | ||||||||||||||||||
| 72.46.2g | R | ||||||||||||||||||
| 72.46.2h | R | ||||||||||||||||||
| 72.46.4a | R | ||||||||||||||||||
| 72.46.4b | R | 
Regular extensions
Data not computed