Normalized defining polynomial
\( x^{12} - 3 x^{10} - 8 x^{9} + 12 x^{8} - 30 x^{7} + 129 x^{6} + 24 x^{5} - 546 x^{4} + 466 x^{3} + \cdots + 247 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[0, 6]$ |
| |
| Discriminant: |
\(2304866385432576\)
\(\medspace = 2^{12}\cdot 3^{14}\cdot 7^{6}\)
|
| |
| Root discriminant: | \(19.06\) |
| |
| Galois root discriminant: | $2^{7/6}3^{7/6}7^{1/2}\approx 21.398934305093306$ | ||
| Ramified primes: |
\(2\), \(3\), \(7\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2^2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | 6.0.1714608.1 | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}-\frac{1}{3}a^{3}+\frac{1}{3}$, $\frac{1}{3}a^{7}-\frac{1}{3}a^{4}+\frac{1}{3}a$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{5}+\frac{1}{3}a^{2}$, $\frac{1}{9}a^{9}-\frac{1}{3}a^{5}+\frac{1}{3}a^{4}-\frac{1}{3}a^{2}+\frac{1}{3}a+\frac{1}{9}$, $\frac{1}{9}a^{10}+\frac{1}{3}a^{5}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}+\frac{1}{9}a+\frac{1}{3}$, $\frac{1}{33327}a^{11}-\frac{526}{33327}a^{10}-\frac{1052}{33327}a^{9}-\frac{234}{3703}a^{8}-\frac{348}{3703}a^{7}+\frac{1090}{11109}a^{6}-\frac{3035}{11109}a^{5}+\frac{425}{11109}a^{4}+\frac{717}{3703}a^{3}-\frac{5567}{33327}a^{2}-\frac{15262}{33327}a+\frac{6442}{33327}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( \frac{466}{529} a^{11} + \frac{2078}{1587} a^{10} - \frac{378}{529} a^{9} - \frac{4333}{529} a^{8} - \frac{2648}{1587} a^{7} - \frac{45652}{1587} a^{6} + \frac{37738}{529} a^{5} + \frac{202856}{1587} a^{4} - \frac{460502}{1587} a^{3} - \frac{14818}{529} a^{2} + \frac{156368}{529} a - \frac{223018}{1587} \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{6277}{33327}a^{11}-\frac{2329}{33327}a^{10}-\frac{34282}{33327}a^{9}-\frac{25805}{11109}a^{8}+\frac{27043}{11109}a^{7}-\frac{9045}{3703}a^{6}+\frac{338213}{11109}a^{5}+\frac{157091}{11109}a^{4}-\frac{1424966}{11109}a^{3}+\frac{1382371}{33327}a^{2}+\frac{4236971}{33327}a-\frac{2762764}{33327}$, $\frac{4658}{1449}a^{11}+\frac{6913}{1449}a^{10}-\frac{3884}{1449}a^{9}-\frac{4832}{161}a^{8}-\frac{1002}{161}a^{7}-\frac{50630}{483}a^{6}+\frac{41933}{161}a^{5}+\frac{75507}{161}a^{4}-\frac{513101}{483}a^{3}-\frac{146614}{1449}a^{2}+\frac{1575505}{1449}a-\frac{759137}{1449}$, $\frac{10471}{33327}a^{11}+\frac{24536}{33327}a^{10}+\frac{1338}{3703}a^{9}-\frac{9937}{3703}a^{8}-\frac{11265}{3703}a^{7}-\frac{47891}{3703}a^{6}+\frac{162593}{11109}a^{5}+\frac{658303}{11109}a^{4}-\frac{568787}{11109}a^{3}-\frac{1858337}{33327}a^{2}+\frac{1783112}{33327}a-\frac{38153}{11109}$, $\frac{57788}{33327}a^{11}+\frac{27635}{11109}a^{10}-\frac{18790}{11109}a^{9}-\frac{182258}{11109}a^{8}-\frac{10340}{3703}a^{7}-\frac{205837}{3703}a^{6}+\frac{1602008}{11109}a^{5}+\frac{2789963}{11109}a^{4}-\frac{6558329}{11109}a^{3}-\frac{1511089}{33327}a^{2}+\frac{6721468}{11109}a-\frac{1097289}{3703}$, $\frac{177}{529}a^{11}-\frac{523}{1587}a^{10}-\frac{3691}{1587}a^{9}-\frac{6857}{1587}a^{8}+\frac{10135}{1587}a^{7}-\frac{2453}{1587}a^{6}+\frac{100286}{1587}a^{5}+\frac{25826}{1587}a^{4}-\frac{430396}{1587}a^{3}+\frac{158146}{1587}a^{2}+\frac{143588}{529}a-\frac{96039}{529}$
|
| |
| Regulator: | \( 1277.50517362 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 1277.50517362 \cdot 2}{6\cdot\sqrt{2304866385432576}}\cr\approx \mathstrut & 0.545755028568 \end{aligned}\]
Galois group
$C_2\times S_4$ (as 12T24):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $C_2 \times S_4$ |
| Character table for $C_2 \times S_4$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.756.1, 6.0.1714608.1, 6.4.16003008.3, 6.2.48009024.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | 6.4.6858432.1, some data not computed |
| Degree 8 siblings: | 8.0.448084224.9, 8.0.82301184.1 |
| Degree 12 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Minimal sibling: | 6.4.6858432.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }^{2}$ | R | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{4}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ | ${\href{/padicField/23.2.0.1}{2} }^{6}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.3.0.1}{3} }^{4}$ | ${\href{/padicField/41.6.0.1}{6} }^{2}$ | ${\href{/padicField/43.3.0.1}{3} }^{4}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.6.12a1.3 | $x^{12} + 6 x^{11} + 21 x^{10} + 50 x^{9} + 90 x^{8} + 126 x^{7} + 141 x^{6} + 126 x^{5} + 90 x^{4} + 50 x^{3} + 23 x^{2} + 8 x + 5$ | $6$ | $2$ | $12$ | $S_4$ | $$[\frac{4}{3}, \frac{4}{3}]_{3}^{2}$$ |
|
\(3\)
| 3.2.6.14a2.1 | $x^{12} + 12 x^{11} + 72 x^{10} + 280 x^{9} + 780 x^{8} + 1632 x^{7} + 2624 x^{6} + 3264 x^{5} + 3126 x^{4} + 2264 x^{3} + 1200 x^{2} + 432 x + 91$ | $6$ | $2$ | $14$ | $D_6$ | $$[\frac{3}{2}]_{2}^{2}$$ |
|
\(7\)
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 7.2.2.2a1.2 | $x^{4} + 12 x^{3} + 42 x^{2} + 36 x + 16$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 7.2.2.2a1.2 | $x^{4} + 12 x^{3} + 42 x^{2} + 36 x + 16$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |