Defining polynomial
|
$( x^{2} + 2 x + 2 )^{6} + 6 ( x^{2} + 2 x + 2 )^{2} + 3$
|
Invariants
| Base field: | $\Q_{3}$ |
| Degree $d$: | $12$ |
| Ramification index $e$: | $6$ |
| Residue field degree $f$: | $2$ |
| Discriminant exponent $c$: | $14$ |
| Discriminant root field: | $\Q_{3}$ |
| Root number: | $1$ |
| $\Aut(K/\Q_{3})$ $=$$\Gal(K/\Q_{3})$: | $D_6$ |
| This field is Galois over $\Q_{3}.$ | |
| Visible Artin slopes: | $[\frac{3}{2}]$ |
| Visible Swan slopes: | $[\frac{1}{2}]$ |
| Means: | $\langle\frac{1}{3}\rangle$ |
| Rams: | $(1)$ |
| Jump set: | $[1, 5]$ |
| Roots of unity: | $24 = (3^{ 2 } - 1) \cdot 3$ |
Intermediate fields
| $\Q_{3}(\sqrt{2})$, $\Q_{3}(\sqrt{3})$, $\Q_{3}(\sqrt{3\cdot 2})$, 3.1.3.3a1.2 x3, 3.2.2.2a1.2, 3.2.3.6a1.1 x3, 3.1.6.7a1.3, 3.1.6.7a2.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
| Unramified subfield: | $\Q_{3}(\sqrt{2})$ $\cong \Q_{3}(t)$ where $t$ is a root of
\( x^{2} + 2 x + 2 \)
|
| Relative Eisenstein polynomial: |
\( x^{6} + 6 x^{2} + 3 \)
$\ \in\Q_{3}(t)[x]$
|
Ramification polygon
| Residual polynomials: | $z^3 + 2$,$2 z^2 + 1$ |
| Associated inertia: | $1$,$1$ |
| Indices of inseparability: | $[2, 0]$ |
Invariants of the Galois closure
| Galois degree: | $12$ |
| Galois group: | $D_6$ (as 12T3) |
| Inertia group: | Intransitive group isomorphic to $S_3$ |
| Wild inertia group: | $C_3$ |
| Galois unramified degree: | $2$ |
| Galois tame degree: | $2$ |
| Galois Artin slopes: | $[\frac{3}{2}]$ |
| Galois Swan slopes: | $[\frac{1}{2}]$ |
| Galois mean slope: | $1.1666666666666667$ |
| Galois splitting model: | $x^{12} - 6 x^{11} + 21 x^{10} - 50 x^{9} + 93 x^{8} - 138 x^{7} + 164 x^{6} - 153 x^{5} + 111 x^{4} - 61 x^{3} + 24 x^{2} - 6 x + 1$ |