| Label |
Polynomial |
Degree |
Signature |
Discriminant |
Ram. prime count |
Root discriminant |
Galois root discriminant |
CM field |
Galois |
Monogenic |
Galois group |
Class group |
Narrow class group |
Unit group torsion |
Unit group rank |
Regulator |
| 12.0.74733890625.1 |
$x^{12} - 6 x^{11} + 21 x^{10} - 50 x^{9} + 93 x^{8} - 138 x^{7} + 164 x^{6} - 153 x^{5} + 111 x^{4} - 61 x^{3} + 24 x^{2} - 6 x + 1$ |
$12$ |
[0,6] |
$3^{14}\cdot 5^{6}$ |
$2$ |
$8.0561300054$ |
$8.05613000539548$ |
|
✓ |
? |
$D_6$ (as 12T3) |
trivial |
trivial |
$6$ |
$5$ |
$5.15894342496$ |
| 12.0.1253826625536.1 |
$x^{12} + 6 x^{10} + 3 x^{8} - 22 x^{6} + 21 x^{4} - 12 x^{2} + 4$ |
$12$ |
[0,6] |
$2^{18}\cdot 3^{14}$ |
$2$ |
$10.1902879774$ |
$10.190287977389717$ |
|
✓ |
|
$D_6$ (as 12T3) |
trivial |
trivial |
$6$ |
$5$ |
$42.889636204$ |
| 12.0.5015306502144.2 |
$x^{12} + 3 x^{10} - 7 x^{6} + 3 x^{2} + 1$ |
$12$ |
[0,6] |
$2^{20}\cdot 3^{14}$ |
$2$ |
$11.438211516$ |
$24.23672593327708$ |
|
|
|
$C_2^2\times S_4$ (as 12T48) |
trivial |
trivial |
$6$ |
$5$ |
$98.2732697513$ |
| 12.0.5015306502144.4 |
$x^{12} - 6 x^{11} + 18 x^{10} - 34 x^{9} + 42 x^{8} - 30 x^{7} + 12 x^{6} + 6 x^{5} + 6 x^{4} + 2 x^{3} + 12 x^{2} + 6 x + 1$ |
$12$ |
[0,6] |
$2^{20}\cdot 3^{14}$ |
$2$ |
$11.438211516$ |
$14.411243462112033$ |
|
|
|
$S_3 \times C_2^2$ (as 12T10) |
trivial |
trivial |
$12$ |
$5$ |
$174.165203115$ |
| 12.0.12244400640000.1 |
$x^{12} + 3 x^{10} - 3 x^{8} - 16 x^{6} + 18 x^{4} + 9 x^{2} + 1$ |
$12$ |
[0,6] |
$2^{12}\cdot 3^{14}\cdot 5^{4}$ |
$3$ |
$12.321439841$ |
$16.11226001079096$ |
|
|
? |
$S_3 \times C_2^2$ (as 12T10) |
trivial |
trivial |
$12$ |
$5$ |
$196.107900244$ |
| 12.0.12244400640000.3 |
$x^{12} + 3 x^{10} + 3 x^{8} + 2 x^{6} - 3 x^{2} + 1$ |
$12$ |
[0,6] |
$2^{12}\cdot 3^{14}\cdot 5^{4}$ |
$3$ |
$12.321439840956693$ |
$30.85830609160372$ |
|
|
✓ |
$C_2^4:S_4$ (as 12T136) |
trivial |
trivial |
$6$ |
$5$ |
$103.72622483709985$ |
| 12.0.20061226008576.11 |
$x^{12} - 3 x^{10} + 3 x^{8} - 6 x^{6} + 18 x^{4} - 36 x^{2} + 36$ |
$12$ |
[0,6] |
$2^{22}\cdot 3^{14}$ |
$2$ |
$12.8389583272$ |
$24.23672593327708$ |
|
|
|
$C_2 \times S_4$ (as 12T24) |
trivial |
trivial |
$6$ |
$5$ |
$227.648985721$ |
| 12.4.80244904034304.1 |
$x^{12} + 9 x^{8} + 20 x^{6} - 12 x^{4} - 24 x^{2} + 4$ |
$12$ |
[4,4] |
$2^{24}\cdot 3^{14}$ |
$2$ |
$14.4112434621$ |
$14.411243462112033$ |
|
|
? |
$S_3 \times C_2^2$ (as 12T10) |
trivial |
$[2]$ |
$2$ |
$7$ |
$351.898828937$ |
| 12.0.80244904034304.2 |
$x^{12} - 9 x^{10} + 30 x^{8} - 43 x^{6} + 24 x^{4} - 3 x^{2} + 1$ |
$12$ |
[0,6] |
$2^{24}\cdot 3^{14}$ |
$2$ |
$14.4112434621$ |
$32.82272053472972$ |
|
|
|
$C_2^4:S_4$ (as 12T136) |
trivial |
trivial |
$6$ |
$5$ |
$363.660586698$ |
| 12.0.80244904034304.3 |
$x^{12} - 8 x^{9} + 15 x^{8} + 24 x^{7} + 32 x^{6} - 24 x^{5} + 15 x^{4} + 8 x^{3} + 1$ |
$12$ |
[0,6] |
$2^{24}\cdot 3^{14}$ |
$2$ |
$14.4112434621$ |
$14.411243462112033$ |
|
✓ |
|
$D_6$ (as 12T3) |
$[2]$ |
$[2]$ |
$4$ |
$5$ |
$473.229437352$ |
| 12.0.115449244262361.1 |
$x^{12} - 3 x^{11} - 6 x^{10} + 41 x^{9} - 42 x^{8} - 123 x^{7} + 380 x^{6} - 333 x^{5} - 126 x^{4} + 391 x^{3} - 90 x^{2} - 213 x + 127$ |
$12$ |
[0,6] |
$3^{14}\cdot 17^{6}$ |
$2$ |
$14.8547697477$ |
$14.854769747694963$ |
|
✓ |
|
$D_6$ (as 12T3) |
trivial |
trivial |
$6$ |
$5$ |
$949.877243014$ |
| 12.0.144054149089536.1 |
$x^{12} - 3 x^{11} + 9 x^{10} - 2 x^{9} + 3 x^{8} - 3 x^{7} - 6 x^{6} - 3 x^{5} + 3 x^{4} - 2 x^{3} + 9 x^{2} - 3 x + 1$ |
$12$ |
[0,6] |
$2^{8}\cdot 3^{14}\cdot 7^{6}$ |
$3$ |
$15.1313315573$ |
$24.612269258377225$ |
|
|
|
$C_2 \times S_4$ (as 12T24) |
trivial |
trivial |
$6$ |
$5$ |
$594.096723246$ |
| 12.0.144054149089536.2 |
$x^{12} - 3 x^{11} + x^{9} + 48 x^{8} - 189 x^{7} + 431 x^{6} - 654 x^{5} + 624 x^{4} - 340 x^{3} + 96 x^{2} - 12 x + 4$ |
$12$ |
[0,6] |
$2^{8}\cdot 3^{14}\cdot 7^{6}$ |
$3$ |
$15.1313315573$ |
$15.13133155729692$ |
✓ |
✓ |
|
$D_6$ (as 12T3) |
trivial |
trivial |
$6$ |
$5$ |
$812.119885731$ |
| 12.4.306110016000000.1 |
$x^{12} + 3 x^{10} - 3 x^{8} + 18 x^{4} - 27 x^{2} + 9$ |
$12$ |
[4,4] |
$2^{12}\cdot 3^{14}\cdot 5^{6}$ |
$3$ |
$16.1122600108$ |
$16.11226001079096$ |
|
|
? |
$S_3 \times C_2^2$ (as 12T10) |
trivial |
$[2]$ |
$2$ |
$7$ |
$389.450803749$ |
| 12.0.306110016000000.1 |
$x^{12} + 3 x^{10} + 9 x^{8} - x^{6} + 9 x^{4} + 3 x^{2} + 1$ |
$12$ |
[0,6] |
$2^{12}\cdot 3^{14}\cdot 5^{6}$ |
$3$ |
$16.1122600108$ |
$16.11226001079096$ |
|
✓ |
|
$D_6$ (as 12T3) |
$[2]$ |
$[2]$ |
$4$ |
$5$ |
$446.718475859$ |
| 12.0.320979616137216.3 |
$x^{12} - 6 x^{11} + 15 x^{10} - 14 x^{9} - 3 x^{8} + 12 x^{7} + 8 x^{6} - 12 x^{5} - 3 x^{4} + 14 x^{3} + 15 x^{2} + 6 x + 1$ |
$12$ |
[0,6] |
$2^{26}\cdot 3^{14}$ |
$2$ |
$16.1760738552$ |
$24.23672593327708$ |
|
|
? |
$C_2^2\times S_4$ (as 12T48) |
$[2]$ |
$[2]$ |
$4$ |
$5$ |
$402.569505236$ |
| 12.4.320979616137216.4 |
$x^{12} - 3 x^{10} + 3 x^{8} - 10 x^{6} + 3 x^{4} - 3 x^{2} + 1$ |
$12$ |
[4,4] |
$2^{26}\cdot 3^{14}$ |
$2$ |
$16.1760738552$ |
$37.37814110674529$ |
|
|
|
$C_2^2\wr S_3$ (as 12T139) |
trivial |
$[2]$ |
$2$ |
$7$ |
$913.564203416$ |
| 12.4.320979616137216.7 |
$x^{12} - 12 x^{10} + 42 x^{8} - 54 x^{6} + 18 x^{4} + 9$ |
$12$ |
[4,4] |
$2^{26}\cdot 3^{14}$ |
$2$ |
$16.1760738552$ |
$24.23672593327708$ |
|
|
|
$C_2^2\times S_4$ (as 12T48) |
trivial |
$[2]$ |
$2$ |
$7$ |
$538.5359116$ |
| 12.0.320979616137216.8 |
$x^{12} - 6 x^{10} + 12 x^{8} - 4 x^{6} - 9 x^{4} + 6 x^{2} + 4$ |
$12$ |
[0,6] |
$2^{26}\cdot 3^{14}$ |
$2$ |
$16.1760738552$ |
$32.82272053472972$ |
|
|
|
$C_2^3:S_4$ (as 12T108) |
trivial |
trivial |
$6$ |
$5$ |
$747.509485843$ |
| 12.0.320979616137216.9 |
$x^{12} - 3 x^{8} - 4 x^{6} + 9 x^{4} + 6 x^{2} + 4$ |
$12$ |
[0,6] |
$2^{26}\cdot 3^{14}$ |
$2$ |
$16.1760738552$ |
$24.23672593327708$ |
|
|
|
$C_2 \times S_4$ (as 12T24) |
trivial |
trivial |
$6$ |
$5$ |
$889.528343238$ |
| 12.0.320979616137216.10 |
$x^{12} + 3 x^{10} + 9 x^{8} + 14 x^{6} + 18 x^{4} + 12 x^{2} + 4$ |
$12$ |
[0,6] |
$2^{26}\cdot 3^{14}$ |
$2$ |
$16.1760738552$ |
$39.0330127936465$ |
|
|
|
$C_2^3:S_4$ (as 12T108) |
trivial |
trivial |
$6$ |
$5$ |
$727.506577153$ |
| 12.0.320979616137216.11 |
$x^{12} + 3 x^{10} + 3 x^{8} + 14 x^{6} + 30 x^{4} + 12 x^{2} + 4$ |
$12$ |
[0,6] |
$2^{26}\cdot 3^{14}$ |
$2$ |
$16.1760738552$ |
$28.822486924224066$ |
|
|
|
$C_2 \times S_4$ (as 12T24) |
trivial |
trivial |
$6$ |
$5$ |
$746.133664789$ |
| 12.0.320979616137216.16 |
$x^{12} - 6 x^{11} + 18 x^{10} - 32 x^{9} + 42 x^{8} - 60 x^{7} + 120 x^{6} - 240 x^{5} + 366 x^{4} - 380 x^{3} + 252 x^{2} - 96 x + 16$ |
$12$ |
[0,6] |
$2^{26}\cdot 3^{14}$ |
$2$ |
$16.1760738552$ |
$24.23672593327708$ |
|
|
|
$C_2^2\times S_4$ (as 12T48) |
$[2]$ |
$[2]$ |
$2$ |
$5$ |
$474.887783693$ |
| 12.0.320979616137216.17 |
$x^{12} - 6 x^{11} + 15 x^{10} - 10 x^{9} - 18 x^{8} + 36 x^{7} + 2 x^{6} - 60 x^{5} + 39 x^{4} + 46 x^{3} - 39 x^{2} - 6 x + 16$ |
$12$ |
[0,6] |
$2^{26}\cdot 3^{14}$ |
$2$ |
$16.1760738552$ |
$37.37814110674529$ |
|
|
|
$C_2^3:S_4$ (as 12T103) |
$[2]$ |
$[2]$ |
$2$ |
$5$ |
$1490.91963263$ |
| 12.0.320979616137216.18 |
$x^{12} + 12 x^{8} - 4 x^{6} + 15 x^{4} + 24 x^{2} + 16$ |
$12$ |
[0,6] |
$2^{26}\cdot 3^{14}$ |
$2$ |
$16.1760738552$ |
$24.23672593327708$ |
|
|
|
$C_2\times S_4$ (as 12T21) |
$[2]$ |
$[2]$ |
$2$ |
$5$ |
$854.316360608$ |
| 12.0.351694699925625.1 |
$x^{12} + 9 x^{10} - 2 x^{9} + 36 x^{8} + 6 x^{7} + 128 x^{6} - 27 x^{5} + 126 x^{4} + 41 x^{3} + 471 x^{2} + 249 x + 37$ |
$12$ |
[0,6] |
$3^{14}\cdot 5^{4}\cdot 7^{6}$ |
$3$ |
$16.2997328067$ |
$21.314516523881878$ |
|
|
? |
$S_3 \times C_2^2$ (as 12T10) |
trivial |
trivial |
$6$ |
$5$ |
$578.612933855$ |
| 12.2.641959232274432.1 |
$x^{12} - 12 x^{8} + 45 x^{4} - 18$ |
$12$ |
[2,5] |
$-\,2^{27}\cdot 3^{14}$ |
$2$ |
$17.1379532612$ |
$31.431144865509623$ |
|
|
? |
$D_4\times S_4$ (as 12T86) |
trivial |
$[2]$ |
$2$ |
$6$ |
$786.716632401$ |
| 12.0.752609431977984.1 |
$x^{12} - 15 x^{10} + 90 x^{8} - 247 x^{6} + 270 x^{4} + 21 x^{2} + 49$ |
$12$ |
[0,6] |
$2^{16}\cdot 3^{14}\cdot 7^{4}$ |
$3$ |
$17.3665734737$ |
$24.01949163173274$ |
✓ |
|
? |
$S_3 \times C_2^2$ (as 12T10) |
trivial |
trivial |
$12$ |
$5$ |
$1712.5783367185309$ |
| 12.4.1283918464548864.1 |
$x^{12} - 6 x^{11} + 27 x^{10} - 80 x^{9} + 165 x^{8} - 246 x^{7} + 197 x^{6} - 63 x^{4} - 34 x^{3} + 15 x^{2} + 24 x - 8$ |
$12$ |
[4,4] |
$2^{28}\cdot 3^{14}$ |
$2$ |
$18.1570289931$ |
$28.822486924224066$ |
|
|
? |
$C_2^2\times S_4$ (as 12T48) |
trivial |
$[2]$ |
$2$ |
$7$ |
$2710.58374409$ |
| 12.4.1283918464548864.4 |
$x^{12} - 6 x^{11} + 9 x^{10} - 2 x^{9} - 3 x^{8} + 12 x^{7} - 24 x^{6} + 12 x^{5} - 3 x^{4} - 2 x^{3} + 9 x^{2} - 6 x + 1$ |
$12$ |
[4,4] |
$2^{28}\cdot 3^{14}$ |
$2$ |
$18.1570289931$ |
$24.23672593327708$ |
|
|
? |
$C_2^2\times S_4$ (as 12T48) |
trivial |
$[2]$ |
$2$ |
$7$ |
$1739.65977308$ |
| 12.4.1283918464548864.8 |
$x^{12} - 3 x^{10} - 6 x^{8} + 14 x^{6} + 21 x^{4} - 39 x^{2} + 4$ |
$12$ |
[4,4] |
$2^{28}\cdot 3^{14}$ |
$2$ |
$18.1570289931$ |
$28.822486924224066$ |
|
|
|
$C_2^2\times S_4$ (as 12T48) |
trivial |
$[2]$ |
$2$ |
$7$ |
$4054.95740345$ |
| 12.4.1283918464548864.9 |
$x^{12} - 16 x^{6} + 33 x^{4} - 24 x^{2} + 4$ |
$12$ |
[4,4] |
$2^{28}\cdot 3^{14}$ |
$2$ |
$18.1570289931$ |
$28.822486924224066$ |
|
|
? |
$C_2^2\times S_4$ (as 12T48) |
trivial |
$[2]$ |
$2$ |
$7$ |
$1835.64161319$ |
| 12.0.1283918464548864.10 |
$x^{12} - 16 x^{6} + 15 x^{4} + 12 x^{2} + 4$ |
$12$ |
[0,6] |
$2^{28}\cdot 3^{14}$ |
$2$ |
$18.1570289931$ |
$24.23672593327708$ |
|
|
|
$C_2\times S_4$ (as 12T21) |
$[2]$ |
$[2]$ |
$2$ |
$5$ |
$1024.60024089$ |
| 12.0.1283918464548864.12 |
$x^{12} + 6 x^{10} + 9 x^{8} - 4 x^{6} + 12 x^{4} + 48 x^{2} + 4$ |
$12$ |
[0,6] |
$2^{28}\cdot 3^{14}$ |
$2$ |
$18.1570289931$ |
$24.23672593327708$ |
|
|
|
$C_2 \times S_4$ (as 12T24) |
$[2]$ |
$[2]$ |
$2$ |
$5$ |
$1120.22870328$ |
| 12.0.1283918464548864.20 |
$x^{12} - 6 x^{10} + 33 x^{8} - 72 x^{6} + 153 x^{4} - 54 x^{2} + 9$ |
$12$ |
[0,6] |
$2^{28}\cdot 3^{14}$ |
$2$ |
$18.1570289931$ |
$28.822486924224066$ |
|
|
|
$C_2 \times S_4$ (as 12T24) |
$[2]$ |
$[2]$ |
$4$ |
$5$ |
$1951.11968897$ |
| 12.0.1283918464548864.23 |
$x^{12} + 12 x^{10} + 42 x^{8} + 54 x^{6} + 18 x^{4} + 9$ |
$12$ |
[0,6] |
$2^{28}\cdot 3^{14}$ |
$2$ |
$18.1570289931$ |
$24.23672593327708$ |
|
|
? |
$C_2 \times S_4$ (as 12T24) |
$[2]$ |
$[2]$ |
$2$ |
$5$ |
$415.903690713$ |
| 12.0.1283918464548864.29 |
$x^{12} + 6 x^{10} + 24 x^{8} + 8 x^{6} + 84 x^{4} - 72 x^{2} + 16$ |
$12$ |
[0,6] |
$2^{28}\cdot 3^{14}$ |
$2$ |
$18.1570289931$ |
$28.822486924224066$ |
|
|
|
$C_2^2\times S_4$ (as 12T48) |
trivial |
trivial |
$6$ |
$5$ |
$1358.39361873$ |
| 12.0.1283918464548864.30 |
$x^{12} - 6 x^{10} + 30 x^{8} - 28 x^{6} + 12 x^{4} - 24 x^{2} + 16$ |
$12$ |
[0,6] |
$2^{28}\cdot 3^{14}$ |
$2$ |
$18.1570289931$ |
$28.822486924224066$ |
|
|
|
$C_2^2\times S_4$ (as 12T48) |
$[2]$ |
$[2]$ |
$6$ |
$5$ |
$924.609803043$ |
| 12.0.1283918464548864.32 |
$x^{12} - 6 x^{10} + 18 x^{8} - 28 x^{6} + 36 x^{4} - 24 x^{2} + 16$ |
$12$ |
[0,6] |
$2^{28}\cdot 3^{14}$ |
$2$ |
$18.1570289931$ |
$39.0330127936465$ |
|
|
|
$C_2^4:S_4$ (as 12T136) |
trivial |
trivial |
$6$ |
$5$ |
$1437.1196471$ |
| 12.0.1283918464548864.33 |
$x^{12} - 6 x^{10} + 15 x^{8} - 4 x^{6} - 18 x^{4} + 16$ |
$12$ |
[0,6] |
$2^{28}\cdot 3^{14}$ |
$2$ |
$18.1570289931$ |
$28.822486924224066$ |
|
|
|
$C_2\times S_4$ (as 12T21) |
$[2]$ |
$[2]$ |
$2$ |
$5$ |
$1781.4359172$ |
| 12.0.1283918464548864.41 |
$x^{12} + 12 x^{8} - 96 x^{6} + 225 x^{4} - 144 x^{2} + 36$ |
$12$ |
[0,6] |
$2^{28}\cdot 3^{14}$ |
$2$ |
$18.1570289931$ |
$28.822486924224066$ |
|
|
|
$C_2 \times S_4$ (as 12T24) |
$[2]$ |
$[2]$ |
$4$ |
$5$ |
$2539.52755885$ |
| 12.0.1283918464548864.42 |
$x^{12} + 6 x^{10} + 15 x^{8} - 54 x^{4} + 36$ |
$12$ |
[0,6] |
$2^{28}\cdot 3^{14}$ |
$2$ |
$18.1570289931$ |
$24.23672593327708$ |
|
|
? |
$C_2 \times S_4$ (as 12T24) |
$[4]$ |
$[4]$ |
$2$ |
$5$ |
$341.505840294$ |
| 12.0.1283918464548864.45 |
$x^{12} + 6 x^{8} + 8 x^{6} + 24 x^{4} + 64$ |
$12$ |
[0,6] |
$2^{28}\cdot 3^{14}$ |
$2$ |
$18.1570289931$ |
$24.23672593327708$ |
|
|
? |
$C_2\times S_4$ (as 12T21) |
$[4]$ |
$[4]$ |
$2$ |
$5$ |
$331.960973935$ |
| 12.0.1413184252229649.1 |
$x^{12} - 3 x^{11} + 12 x^{9} - 15 x^{8} - 15 x^{7} + 53 x^{6} - 30 x^{5} - 60 x^{4} + 96 x^{3} - 96 x + 64$ |
$12$ |
[0,6] |
$3^{14}\cdot 17189^{2}$ |
$2$ |
$18.302759192$ |
$472.35309967875344$ |
✓ |
|
? |
$S_6\times C_2$ (as 12T219) |
trivial |
trivial |
$6$ |
$5$ |
$1171.92080879$ |
| 12.8.2304866385432576.1 |
$x^{12} - 9 x^{10} - 2 x^{9} + 30 x^{8} + 24 x^{7} - 79 x^{6} - 30 x^{5} + 108 x^{4} - 22 x^{3} - 27 x^{2} + 6 x + 1$ |
$12$ |
[8,2] |
$2^{12}\cdot 3^{14}\cdot 7^{6}$ |
$3$ |
$19.064283142$ |
$21.398934305093306$ |
|
|
? |
$C_2\times S_4$ (as 12T21) |
trivial |
$[2]$ |
$2$ |
$9$ |
$2802.78380964$ |
| 12.0.2304866385432576.1 |
$x^{12} + 6 x^{10} + 3 x^{8} + 8 x^{6} + 3 x^{4} + 6 x^{2} + 1$ |
$12$ |
[0,6] |
$2^{12}\cdot 3^{14}\cdot 7^{6}$ |
$3$ |
$19.064283142$ |
$21.398934305093306$ |
|
|
? |
$C_2 \times S_4$ (as 12T24) |
$[2]$ |
$[2]$ |
$2$ |
$5$ |
$1087.92938511$ |
| 12.0.2304866385432576.5 |
$x^{12} - 3 x^{10} - 8 x^{9} + 12 x^{8} - 30 x^{7} + 129 x^{6} + 24 x^{5} - 546 x^{4} + 466 x^{3} + 381 x^{2} - 672 x + 247$ |
$12$ |
[0,6] |
$2^{12}\cdot 3^{14}\cdot 7^{6}$ |
$3$ |
$19.064283142$ |
$21.398934305093306$ |
|
|
? |
$C_2 \times S_4$ (as 12T24) |
$[2]$ |
$[2]$ |
$6$ |
$5$ |
$1277.50517362$ |
| 12.2.2567836929097728.11 |
$x^{12} + 6 x^{10} + 9 x^{8} - 4 x^{6} - 6 x^{4} + 12 x^{2} - 2$ |
$12$ |
[2,5] |
$-\,2^{29}\cdot 3^{14}$ |
$2$ |
$19.2367021214$ |
$70.05290228546976$ |
|
|
? |
$C_4^3:S_4$ (as 12T225) |
trivial |
$[2]$ |
$2$ |
$6$ |
$1208.83699213$ |
| 12.2.2567836929097728.12 |
$x^{12} + 9 x^{8} - 28 x^{6} - 72 x^{5} - 87 x^{4} - 48 x^{3} - 12 x^{2} + 1$ |
$12$ |
[2,5] |
$-\,2^{29}\cdot 3^{14}$ |
$2$ |
$19.2367021214$ |
$28.822486924224066$ |
|
|
? |
$C_4:S_4$ (as 12T54) |
trivial |
$[2]$ |
$2$ |
$6$ |
$2370.22800102$ |
| 12.0.4244902593608889.1 |
$x^{12} - 6 x^{11} + 21 x^{10} - 48 x^{9} + 81 x^{8} - 108 x^{7} + 137 x^{6} - 168 x^{5} - 15 x^{4} + 258 x^{3} - 99 x^{2} - 90 x + 100$ |
$12$ |
[0,6] |
$3^{14}\cdot 31^{6}$ |
$2$ |
$20.0596019431$ |
$20.05960194310363$ |
✓ |
✓ |
|
$D_6$ (as 12T3) |
$[3]$ |
$[3]$ |
$6$ |
$5$ |
$2491.38208894$ |