Normalized defining polynomial
\( x^{12} - 6 x^{11} + 21 x^{10} - 48 x^{9} + 81 x^{8} - 108 x^{7} + 137 x^{6} - 168 x^{5} - 15 x^{4} + 258 x^{3} - 99 x^{2} - 90 x + 100 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4244902593608889=3^{14}\cdot 31^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{6} - \frac{1}{2} a^{3} - \frac{1}{3}$, $\frac{1}{12} a^{7} - \frac{1}{12} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{12} a^{8} - \frac{5}{12} a^{2}$, $\frac{1}{24} a^{9} - \frac{1}{24} a^{7} - \frac{1}{24} a^{6} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} + \frac{1}{6} a^{3} + \frac{1}{8} a^{2} - \frac{5}{12} a - \frac{1}{6}$, $\frac{1}{144} a^{10} - \frac{1}{48} a^{9} - \frac{1}{144} a^{8} - \frac{1}{72} a^{6} - \frac{1}{24} a^{5} - \frac{11}{144} a^{4} - \frac{5}{48} a^{3} - \frac{25}{144} a^{2} - \frac{1}{24} a + \frac{1}{36}$, $\frac{1}{393840} a^{11} - \frac{11}{24615} a^{10} - \frac{2807}{196920} a^{9} + \frac{10757}{393840} a^{8} + \frac{6023}{196920} a^{7} + \frac{4933}{98460} a^{6} + \frac{31627}{393840} a^{5} + \frac{6869}{49230} a^{4} - \frac{18781}{39384} a^{3} + \frac{2303}{393840} a^{2} + \frac{18893}{196920} a - \frac{5293}{19692}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{83}{32820} a^{11} - \frac{997}{131280} a^{10} + \frac{4157}{131280} a^{9} - \frac{8791}{131280} a^{8} + \frac{11291}{65640} a^{7} - \frac{4357}{16410} a^{6} + \frac{15851}{32820} a^{5} - \frac{61291}{131280} a^{4} + \frac{10315}{26256} a^{3} - \frac{140689}{131280} a^{2} - \frac{31699}{65640} a + \frac{5705}{6564} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2491.38208894 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $D_6$ |
| Character table for $D_6$ |
Intermediate fields
| \(\Q(\sqrt{93}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-31}) \), 3.3.837.1 x3, \(\Q(\sqrt{-3}, \sqrt{-31})\), 6.6.65152917.1, 6.0.2101707.2 x3, 6.0.21717639.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.14.11 | $x^{12} + 6 x^{11} + 21 x^{10} + 36 x^{9} + 30 x^{8} + 36 x^{7} + 3 x^{6} + 36 x^{5} + 27 x^{4} - 9 x^{2} + 36$ | $6$ | $2$ | $14$ | $D_6$ | $[3/2]_{2}^{2}$ |
| $31$ | 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |