Normalized defining polynomial
\( x^{12} - 3x^{11} + x^{9} + 48x^{8} - 189x^{7} + 431x^{6} - 654x^{5} + 624x^{4} - 340x^{3} + 96x^{2} - 12x + 4 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[0, 6]$ |
| |
| Discriminant: |
\(144054149089536\)
\(\medspace = 2^{8}\cdot 3^{14}\cdot 7^{6}\)
|
| |
| Root discriminant: | \(15.13\) |
| |
| Galois root discriminant: | $2^{2/3}3^{7/6}7^{1/2}\approx 15.13133155729692$ | ||
| Ramified primes: |
\(2\), \(3\), \(7\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $D_6$ |
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
| Reflex fields: | \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-7}) \), 6.0.1714608.1$^{9}$, 6.0.4000752.1$^{9}$, 12.0.144054149089536.2$^{12}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{7}a^{8}+\frac{1}{7}a^{6}-\frac{1}{7}a^{4}+\frac{2}{7}a^{2}-\frac{3}{7}$, $\frac{1}{14}a^{9}-\frac{1}{14}a^{8}-\frac{3}{7}a^{7}-\frac{1}{14}a^{6}+\frac{3}{7}a^{5}+\frac{1}{14}a^{4}-\frac{5}{14}a^{3}-\frac{1}{7}a^{2}+\frac{2}{7}a-\frac{2}{7}$, $\frac{1}{196}a^{10}-\frac{5}{196}a^{9}-\frac{3}{49}a^{8}+\frac{37}{196}a^{7}-\frac{2}{7}a^{6}+\frac{89}{196}a^{5}+\frac{15}{196}a^{4}-\frac{47}{98}a^{3}-\frac{2}{49}a^{2}+\frac{39}{98}a-\frac{20}{49}$, $\frac{1}{5500348}a^{11}-\frac{169}{1375087}a^{10}-\frac{134375}{5500348}a^{9}-\frac{6575}{289492}a^{8}-\frac{2359467}{5500348}a^{7}-\frac{1483029}{5500348}a^{6}+\frac{628990}{1375087}a^{5}-\frac{109535}{289492}a^{4}+\frac{49195}{1375087}a^{3}-\frac{327}{56126}a^{2}-\frac{610051}{2750174}a-\frac{96907}{1375087}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
| |
| Relative class number: | $1$ |
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( \frac{559}{10339} a^{11} - \frac{4785}{41356} a^{10} - \frac{901}{5908} a^{9} + \frac{47}{1477} a^{8} + \frac{113135}{41356} a^{7} - \frac{80932}{10339} a^{6} + \frac{580379}{41356} a^{5} - \frac{648191}{41356} a^{4} + \frac{106179}{20678} a^{3} + \frac{52092}{10339} a^{2} - \frac{71077}{20678} a + \frac{6829}{10339} \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{32017}{1375087}a^{11}-\frac{98027}{2750174}a^{10}-\frac{312635}{2750174}a^{9}-\frac{873}{72373}a^{8}+\frac{3482531}{2750174}a^{7}-\frac{3528439}{1375087}a^{6}+\frac{8721281}{2750174}a^{5}-\frac{236203}{144746}a^{4}-\frac{5703407}{1375087}a^{3}+\frac{885212}{196441}a^{2}+\frac{1514361}{1375087}a-\frac{188745}{1375087}$, $\frac{269483}{1375087}a^{11}-\frac{3169293}{5500348}a^{10}-\frac{246693}{5500348}a^{9}+\frac{24771}{144746}a^{8}+\frac{51993911}{5500348}a^{7}-\frac{99875645}{2750174}a^{6}+\frac{451499123}{5500348}a^{5}-\frac{35743979}{289492}a^{4}+\frac{158004362}{1375087}a^{3}-\frac{12182946}{196441}a^{2}+\frac{44641455}{2750174}a-\frac{1205566}{1375087}$, $\frac{202453}{2750174}a^{11}-\frac{320213}{1375087}a^{10}+\frac{35635}{1375087}a^{9}+\frac{8149}{72373}a^{8}+\frac{9682993}{2750174}a^{7}-\frac{19990102}{1375087}a^{6}+\frac{46076706}{1375087}a^{5}-\frac{3690054}{72373}a^{4}+\frac{134186735}{2750174}a^{3}-\frac{5053920}{196441}a^{2}+\frac{9103459}{1375087}a-\frac{539142}{1375087}$, $\frac{547915}{5500348}a^{11}-\frac{2793303}{5500348}a^{10}+\frac{472224}{1375087}a^{9}+\frac{213401}{289492}a^{8}+\frac{7024824}{1375087}a^{7}-\frac{158684065}{5500348}a^{6}+\frac{377684933}{5500348}a^{5}-\frac{16215729}{144746}a^{4}+\frac{153896039}{1375087}a^{3}-\frac{20335523}{392882}a^{2}+\frac{3773558}{1375087}a+\frac{473757}{1375087}$, $\frac{208685}{5500348}a^{11}-\frac{189015}{1375087}a^{10}+\frac{411009}{5500348}a^{9}+\frac{11401}{289492}a^{8}+\frac{9823137}{5500348}a^{7}-\frac{45757553}{5500348}a^{6}+\frac{28732919}{1375087}a^{5}-\frac{10214455}{289492}a^{4}+\frac{54525757}{1375087}a^{3}-\frac{10294709}{392882}a^{2}+\frac{22430477}{2750174}a-\frac{165983}{1375087}$
|
| |
| Regulator: | \( 812.119885731 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 812.119885731 \cdot 1}{6\cdot\sqrt{144054149089536}}\cr\approx \mathstrut & 0.693881356553 \end{aligned}\]
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $D_6$ |
| Character table for $D_6$ |
Intermediate fields
| \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-7}) \), 3.3.756.1 x3, \(\Q(\sqrt{-3}, \sqrt{-7})\), 6.6.12002256.1, 6.0.1714608.1 x3, 6.0.4000752.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | 6.0.1714608.1, 6.0.4000752.1 |
| Minimal sibling: | 6.0.1714608.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }^{2}$ | R | ${\href{/padicField/11.2.0.1}{2} }^{6}$ | ${\href{/padicField/13.2.0.1}{2} }^{6}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{6}$ | ${\href{/padicField/23.2.0.1}{2} }^{6}$ | ${\href{/padicField/29.2.0.1}{2} }^{6}$ | ${\href{/padicField/31.2.0.1}{2} }^{6}$ | ${\href{/padicField/37.3.0.1}{3} }^{4}$ | ${\href{/padicField/41.6.0.1}{6} }^{2}$ | ${\href{/padicField/43.3.0.1}{3} }^{4}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.3.4a1.2 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 3 x + 3$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
| 2.2.3.4a1.2 | $x^{6} + 3 x^{5} + 6 x^{4} + 7 x^{3} + 6 x^{2} + 3 x + 3$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
|
\(3\)
| 3.2.6.14a2.1 | $x^{12} + 12 x^{11} + 72 x^{10} + 280 x^{9} + 780 x^{8} + 1632 x^{7} + 2624 x^{6} + 3264 x^{5} + 3126 x^{4} + 2264 x^{3} + 1200 x^{2} + 432 x + 91$ | $6$ | $2$ | $14$ | $D_6$ | $$[\frac{3}{2}]_{2}^{2}$$ |
|
\(7\)
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 7.1.2.1a1.1 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |