Properties

Label 12.0.351694699925625.1
Degree $12$
Signature $[0, 6]$
Discriminant $3.517\times 10^{14}$
Root discriminant \(16.30\)
Ramified primes $3,5,7$
Class number $1$
Class group trivial
Galois group $S_3 \times C_2^2$ (as 12T10)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^12 + 9*x^10 - 2*x^9 + 36*x^8 + 6*x^7 + 128*x^6 - 27*x^5 + 126*x^4 + 41*x^3 + 471*x^2 + 249*x + 37)
 
Copy content gp:K = bnfinit(y^12 + 9*y^10 - 2*y^9 + 36*y^8 + 6*y^7 + 128*y^6 - 27*y^5 + 126*y^4 + 41*y^3 + 471*y^2 + 249*y + 37, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 + 9*x^10 - 2*x^9 + 36*x^8 + 6*x^7 + 128*x^6 - 27*x^5 + 126*x^4 + 41*x^3 + 471*x^2 + 249*x + 37);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 + 9*x^10 - 2*x^9 + 36*x^8 + 6*x^7 + 128*x^6 - 27*x^5 + 126*x^4 + 41*x^3 + 471*x^2 + 249*x + 37)
 

\( x^{12} + 9x^{10} - 2x^{9} + 36x^{8} + 6x^{7} + 128x^{6} - 27x^{5} + 126x^{4} + 41x^{3} + 471x^{2} + 249x + 37 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $12$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 6]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(351694699925625\) \(\medspace = 3^{14}\cdot 5^{4}\cdot 7^{6}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(16.30\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{7/6}5^{1/2}7^{1/2}\approx 21.314516523881878$
Ramified primes:   \(3\), \(5\), \(7\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_2^2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
Maximal CM subfield:  \(\Q(\sqrt{-3}, \sqrt{-7})\)

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5571136537885}a^{11}+\frac{307211680796}{5571136537885}a^{10}+\frac{416958003225}{1114227307577}a^{9}-\frac{1511382611002}{5571136537885}a^{8}-\frac{2492277457486}{5571136537885}a^{7}-\frac{228827965067}{1114227307577}a^{6}+\frac{729701042138}{5571136537885}a^{5}-\frac{1046044952349}{5571136537885}a^{4}+\frac{1803700294347}{5571136537885}a^{3}+\frac{39813118444}{118534819955}a^{2}+\frac{2259284799169}{5571136537885}a+\frac{320172027818}{5571136537885}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  Trivial group, which has order $1$
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order $1$
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $5$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( \frac{257854}{15958615} a^{11} + \frac{130664}{15958615} a^{10} + \frac{419500}{3191723} a^{9} + \frac{559302}{15958615} a^{8} + \frac{7778776}{15958615} a^{7} + \frac{881687}{3191723} a^{6} + \frac{33026407}{15958615} a^{5} - \frac{6382916}{15958615} a^{4} + \frac{26854183}{15958615} a^{3} + \frac{123586}{339545} a^{2} + \frac{151157511}{15958615} a + \frac{47737367}{15958615} \)  (order $6$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{6918137308}{1114227307577}a^{11}+\frac{1091442034}{1114227307577}a^{10}+\frac{56773841960}{1114227307577}a^{9}-\frac{6417412737}{1114227307577}a^{8}+\frac{228793657924}{1114227307577}a^{7}+\frac{43739570585}{1114227307577}a^{6}+\frac{1011203786677}{1114227307577}a^{5}-\frac{420627904170}{1114227307577}a^{4}+\frac{1272961870901}{1114227307577}a^{3}+\frac{1036649602}{23706963991}a^{2}+\frac{4852041449940}{1114227307577}a-\frac{32228355277}{1114227307577}$, $\frac{28057554522}{5571136537885}a^{11}-\frac{86999148493}{5571136537885}a^{10}+\frac{75264343559}{1114227307577}a^{9}-\frac{797420904519}{5571136537885}a^{8}+\frac{1884063376278}{5571136537885}a^{7}-\frac{444868799560}{1114227307577}a^{6}+\frac{3522344555286}{5571136537885}a^{5}-\frac{4520067029863}{5571136537885}a^{4}+\frac{7408112345749}{5571136537885}a^{3}-\frac{38732444022}{118534819955}a^{2}-\frac{5564865470617}{5571136537885}a+\frac{1246770325046}{5571136537885}$, $\frac{80205358276}{5571136537885}a^{11}-\frac{72456799244}{5571136537885}a^{10}+\frac{131830825158}{1114227307577}a^{9}-\frac{557120788517}{5571136537885}a^{8}+\frac{2142849098409}{5571136537885}a^{7}+\frac{45212419266}{1114227307577}a^{6}+\frac{5258196826443}{5571136537885}a^{5}-\frac{4070459356529}{5571136537885}a^{4}+\frac{4701886042777}{5571136537885}a^{3}+\frac{225845584019}{118534819955}a^{2}+\frac{18511147519079}{5571136537885}a+\frac{2079381540298}{5571136537885}$, $\frac{270190660571}{5571136537885}a^{11}-\frac{209650320014}{5571136537885}a^{10}+\frac{564386339001}{1114227307577}a^{9}-\frac{2912189227397}{5571136537885}a^{8}+\frac{13632844929929}{5571136537885}a^{7}-\frac{1935965642186}{1114227307577}a^{6}+\frac{45559852161653}{5571136537885}a^{5}-\frac{35721798941789}{5571136537885}a^{4}+\frac{65378111373667}{5571136537885}a^{3}-\frac{776572256746}{118534819955}a^{2}+\frac{149976626932704}{5571136537885}a+\frac{15841602607503}{5571136537885}$, $\frac{4990473749}{1114227307577}a^{11}-\frac{11986227193}{1114227307577}a^{10}+\frac{62827835383}{1114227307577}a^{9}-\frac{136041037132}{1114227307577}a^{8}+\frac{331190846825}{1114227307577}a^{7}-\frac{482924351732}{1114227307577}a^{6}+\frac{853893413170}{1114227307577}a^{5}-\frac{1045567784541}{1114227307577}a^{4}+\frac{1591838273002}{1114227307577}a^{3}-\frac{25331331043}{23706963991}a^{2}+\frac{849271788794}{1114227307577}a+\frac{379699592120}{1114227307577}$ Copy content Toggle raw display
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 578.612933855 \)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 578.612933855 \cdot 1}{6\cdot\sqrt{351694699925625}}\cr\approx \mathstrut & 0.316397603471 \end{aligned}\]

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^12 + 9*x^10 - 2*x^9 + 36*x^8 + 6*x^7 + 128*x^6 - 27*x^5 + 126*x^4 + 41*x^3 + 471*x^2 + 249*x + 37) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^12 + 9*x^10 - 2*x^9 + 36*x^8 + 6*x^7 + 128*x^6 - 27*x^5 + 126*x^4 + 41*x^3 + 471*x^2 + 249*x + 37, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 + 9*x^10 - 2*x^9 + 36*x^8 + 6*x^7 + 128*x^6 - 27*x^5 + 126*x^4 + 41*x^3 + 471*x^2 + 249*x + 37); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 + 9*x^10 - 2*x^9 + 36*x^8 + 6*x^7 + 128*x^6 - 27*x^5 + 126*x^4 + 41*x^3 + 471*x^2 + 249*x + 37); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times D_6$ (as 12T10):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 24
The 12 conjugacy class representatives for $S_3 \times C_2^2$
Character table for $S_3 \times C_2^2$

Intermediate fields

\(\Q(\sqrt{21}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-7}) \), 3.1.135.1, \(\Q(\sqrt{-3}, \sqrt{-7})\), 6.2.18753525.2, 6.0.54675.1, 6.0.6251175.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 24
Degree 12 siblings: 12.4.8792367498140625.1, 12.0.8792367498140625.3, 12.0.976929722015625.1
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.6.0.1}{6} }^{2}$ R R R ${\href{/padicField/11.2.0.1}{2} }^{6}$ ${\href{/padicField/13.2.0.1}{2} }^{6}$ ${\href{/padicField/17.6.0.1}{6} }^{2}$ ${\href{/padicField/19.6.0.1}{6} }^{2}$ ${\href{/padicField/23.6.0.1}{6} }^{2}$ ${\href{/padicField/29.2.0.1}{2} }^{6}$ ${\href{/padicField/31.6.0.1}{6} }^{2}$ ${\href{/padicField/37.2.0.1}{2} }^{4}{,}\,{\href{/padicField/37.1.0.1}{1} }^{4}$ ${\href{/padicField/41.2.0.1}{2} }^{6}$ ${\href{/padicField/43.2.0.1}{2} }^{4}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ ${\href{/padicField/47.2.0.1}{2} }^{6}$ ${\href{/padicField/53.6.0.1}{6} }^{2}$ ${\href{/padicField/59.2.0.1}{2} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.2.6.14a2.1$x^{12} + 12 x^{11} + 72 x^{10} + 280 x^{9} + 780 x^{8} + 1632 x^{7} + 2624 x^{6} + 3264 x^{5} + 3126 x^{4} + 2264 x^{3} + 1200 x^{2} + 432 x + 91$$6$$2$$14$$D_6$$$[\frac{3}{2}]_{2}^{2}$$
\(5\) Copy content Toggle raw display 5.2.1.0a1.1$x^{2} + 4 x + 2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
5.2.1.0a1.1$x^{2} + 4 x + 2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
5.2.2.2a1.2$x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$
5.2.2.2a1.2$x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$
\(7\) Copy content Toggle raw display 7.1.2.1a1.1$x^{2} + 7$$2$$1$$1$$C_2$$$[\ ]_{2}$$
7.1.2.1a1.1$x^{2} + 7$$2$$1$$1$$C_2$$$[\ ]_{2}$$
7.2.2.2a1.2$x^{4} + 12 x^{3} + 42 x^{2} + 36 x + 16$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$
7.2.2.2a1.2$x^{4} + 12 x^{3} + 42 x^{2} + 36 x + 16$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)