Show commands: Magma
Group invariants
| Abstract group: | $C_2 \times S_4$ |
| |
| Order: | $48=2^{4} \cdot 3$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $12$ |
| |
| Transitive number $t$: | $24$ |
| |
| CHM label: | $S_{4}(6c)[x]2$ | ||
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $4$ |
| |
| Generators: | $(2,8)(3,9)(4,10)(5,11)$, $(1,7)(2,10)(3,11)(4,8)(5,9)(6,12)$, $(1,5,9)(2,6,10)(3,7,11)(4,8,12)$, $(1,12)(2,3)(4,5)(6,7)(8,9)(10,11)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $12$: $D_{6}$ $24$: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: None
Degree 6: $D_{6}$, $S_4$, $S_4\times C_2$
Low degree siblings
6T11 x 2, 8T24 x 2, 12T21, 12T22, 12T23 x 2, 12T24, 16T61, 24T46, 24T47, 24T48 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{12}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{6}$ | $1$ | $2$ | $6$ | $( 1,12)( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)$ |
| 2B | $2^{6}$ | $3$ | $2$ | $6$ | $( 1, 6)( 2, 3)( 4,11)( 5,10)( 7,12)( 8, 9)$ |
| 2C | $2^{4},1^{4}$ | $3$ | $2$ | $4$ | $( 1, 7)( 2, 8)( 3, 9)( 6,12)$ |
| 2D | $2^{6}$ | $6$ | $2$ | $6$ | $( 1, 8)( 2, 7)( 3, 6)( 4,11)( 5,10)( 9,12)$ |
| 2E | $2^{6}$ | $6$ | $2$ | $6$ | $( 1, 3)( 2,12)( 4,10)( 5,11)( 6, 8)( 7, 9)$ |
| 3A | $3^{4}$ | $8$ | $3$ | $8$ | $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
| 4A | $4^{2},1^{4}$ | $6$ | $4$ | $6$ | $( 1, 3, 7, 9)( 2, 6, 8,12)$ |
| 4B | $4^{2},2^{2}$ | $6$ | $4$ | $8$ | $( 1, 8, 7, 2)( 3,12, 9, 6)( 4, 5)(10,11)$ |
| 6A | $6^{2}$ | $8$ | $6$ | $10$ | $( 1, 4, 9,12, 5, 8)( 2, 7,10, 3, 6,11)$ |
Malle's constant $a(G)$: $1/4$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 3A | 4A | 4B | 6A | ||
| Size | 1 | 1 | 3 | 3 | 6 | 6 | 8 | 6 | 6 | 8 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 3A | 2C | 2C | 3A | |
| 3 P | 1A | 2A | 2B | 2C | 2D | 2E | 1A | 4A | 4B | 2A | |
| Type | |||||||||||
| 48.48.1a | R | ||||||||||
| 48.48.1b | R | ||||||||||
| 48.48.1c | R | ||||||||||
| 48.48.1d | R | ||||||||||
| 48.48.2a | R | ||||||||||
| 48.48.2b | R | ||||||||||
| 48.48.3a | R | ||||||||||
| 48.48.3b | R | ||||||||||
| 48.48.3c | R | ||||||||||
| 48.48.3d | R |
Regular extensions
Data not computed