Normalized defining polynomial
\( x^{8} - 2 x^{7} + 4 x^{6} - 3 x^{4} + 12 x^{3} + 9 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(82301184=2^{8}\cdot 3^{8}\cdot 7^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $9.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{5} + \frac{1}{9} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{7} - \frac{1}{9} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2}{9} a^{7} + \frac{4}{9} a^{6} - \frac{8}{9} a^{5} + \frac{1}{3} a^{4} - \frac{4}{3} a^{2} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{9} a^{7} - \frac{1}{3} a^{6} + a^{5} - \frac{10}{9} a^{4} + \frac{2}{3} a^{3} + \frac{4}{3} a^{2} - \frac{2}{3} a + 1 \), \( \frac{1}{9} a^{7} + \frac{1}{3} a^{5} + \frac{2}{9} a^{4} + \frac{2}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + 1 \), \( \frac{1}{3} a^{7} - \frac{4}{9} a^{6} + \frac{8}{9} a^{5} + \frac{5}{9} a^{4} - \frac{2}{3} a^{3} + \frac{8}{3} a^{2} + \frac{7}{3} a \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23.0216827639 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_4$ (as 8T24):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $S_4\times C_2$ |
| Character table for $S_4\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.3024.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | 6.4.6858432.1, 6.4.16003008.3 |
| Degree 8 sibling: | 8.0.448084224.9 |
| Degree 12 siblings: | 12.4.439022168653824.1, 12.0.47038089498624.1, 12.0.2304866385432576.1, 12.8.2304866385432576.1, 12.0.2304866385432576.5, 12.0.256096265048064.2 |
| Degree 16 sibling: | 16.0.16263137215612256256.1 |
| Degree 24 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.11 | $x^{8} + 20 x^{2} + 4$ | $4$ | $2$ | $8$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.6.7.5 | $x^{6} + 6 x^{2} + 3$ | $6$ | $1$ | $7$ | $D_{6}$ | $[3/2]_{2}^{2}$ | |
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.3_7.2t1.1c1 | $1$ | $ 3 \cdot 7 $ | $x^{2} - x - 5$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.7.2t1.1c1 | $1$ | $ 7 $ | $x^{2} - x + 2$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 2.2e2_3e3_7.6t3.6c1 | $2$ | $ 2^{2} \cdot 3^{3} \cdot 7 $ | $x^{6} - 3 x^{5} + 12 x^{4} - 19 x^{3} + 30 x^{2} - 21 x + 7$ | $D_{6}$ (as 6T3) | $1$ | $-2$ | |
| 2.2e2_3e3_7.3t2.2c1 | $2$ | $ 2^{2} \cdot 3^{3} \cdot 7 $ | $x^{3} - 6 x - 2$ | $S_3$ (as 3T2) | $1$ | $2$ | |
| * | 3.2e4_3e3_7.4t5.1c1 | $3$ | $ 2^{4} \cdot 3^{3} \cdot 7 $ | $x^{4} - 2 x^{3} + 3$ | $S_4$ (as 4T5) | $1$ | $-1$ |
| 3.2e4_3e3_7e2.6t11.9c1 | $3$ | $ 2^{4} \cdot 3^{3} \cdot 7^{2}$ | $x^{8} - 2 x^{7} + 4 x^{6} - 3 x^{4} + 12 x^{3} + 9$ | $S_4\times C_2$ (as 8T24) | $1$ | $1$ | |
| * | 3.2e4_3e4_7.6t11.5c1 | $3$ | $ 2^{4} \cdot 3^{4} \cdot 7 $ | $x^{8} - 2 x^{7} + 4 x^{6} - 3 x^{4} + 12 x^{3} + 9$ | $S_4\times C_2$ (as 8T24) | $1$ | $1$ |
| 3.2e4_3e4_7e2.6t8.1c1 | $3$ | $ 2^{4} \cdot 3^{4} \cdot 7^{2}$ | $x^{4} - 2 x^{3} + 3$ | $S_4$ (as 4T5) | $1$ | $-1$ |