Normalized defining polynomial
\( x^{10} + 28x^{8} - 82x^{7} - 408x^{6} - 3280x^{5} - 13117x^{4} - 11480x^{3} - 7798x^{2} - 2624x - 5972 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[2, 4]$ |
| |
| Discriminant: |
\(63580957267604373504\)
\(\medspace = 2^{15}\cdot 3^{5}\cdot 41^{8}\)
|
| |
| Root discriminant: | \(95.57\) |
| |
| Galois root discriminant: | $2^{3/2}3^{1/2}41^{4/5}\approx 95.57244712596375$ | ||
| Ramified primes: |
\(2\), \(3\), \(41\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{6}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{10}a^{8}+\frac{1}{10}a^{7}+\frac{1}{10}a^{6}+\frac{1}{10}a^{5}-\frac{1}{2}a^{4}-\frac{3}{10}a^{3}+\frac{2}{5}a-\frac{2}{5}$, $\frac{1}{45\cdots 50}a^{9}+\frac{58\cdots 76}{22\cdots 75}a^{8}+\frac{27\cdots 57}{45\cdots 50}a^{7}+\frac{32\cdots 57}{45\cdots 50}a^{6}+\frac{21\cdots 31}{45\cdots 50}a^{5}+\frac{10\cdots 07}{45\cdots 50}a^{4}-\frac{42\cdots 89}{22\cdots 75}a^{3}+\frac{13\cdots 39}{45\cdots 50}a^{2}+\frac{19\cdots 78}{45\cdots 15}a-\frac{44\cdots 07}{22\cdots 75}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{5}$, which has order $5$ (assuming GRH) |
| |
| Narrow class group: | $C_{10}$, which has order $10$ (assuming GRH) |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{82337378}{140434539175}a^{9}-\frac{1279569}{140434539175}a^{8}+\frac{2219789121}{140434539175}a^{7}-\frac{6634764279}{140434539175}a^{6}-\frac{36255657457}{140434539175}a^{5}-\frac{259131564829}{140434539175}a^{4}-\frac{1058428211609}{140434539175}a^{3}-\frac{684862066358}{140434539175}a^{2}+\frac{32024120768}{28086907835}a-\frac{673606233367}{140434539175}$, $\frac{3921704044467}{90\cdots 30}a^{9}+\frac{82385235832957}{90\cdots 30}a^{8}-\frac{151223715500134}{45\cdots 15}a^{7}+\frac{814131272728896}{45\cdots 15}a^{6}-\frac{12\cdots 83}{90\cdots 23}a^{5}+\frac{43\cdots 52}{45\cdots 15}a^{4}-\frac{32\cdots 61}{18\cdots 46}a^{3}-\frac{39\cdots 97}{90\cdots 30}a^{2}-\frac{30\cdots 54}{45\cdots 15}a-\frac{19\cdots 37}{90\cdots 23}$, $\frac{33\cdots 37}{90\cdots 30}a^{9}-\frac{394640613816131}{90\cdots 30}a^{8}+\frac{45\cdots 02}{45\cdots 15}a^{7}-\frac{14\cdots 73}{45\cdots 15}a^{6}-\frac{68\cdots 29}{45\cdots 15}a^{5}-\frac{53\cdots 63}{45\cdots 15}a^{4}-\frac{41\cdots 91}{90\cdots 30}a^{3}-\frac{26\cdots 87}{90\cdots 30}a^{2}+\frac{72\cdots 34}{90\cdots 23}a+\frac{14\cdots 06}{45\cdots 15}$, $\frac{334920560229003}{64\cdots 50}a^{9}-\frac{989726826909989}{64\cdots 50}a^{8}+\frac{12\cdots 01}{64\cdots 50}a^{7}-\frac{62\cdots 99}{64\cdots 50}a^{6}+\frac{42\cdots 23}{64\cdots 50}a^{5}-\frac{12\cdots 79}{64\cdots 50}a^{4}-\frac{56\cdots 87}{32\cdots 25}a^{3}-\frac{48\cdots 04}{32\cdots 25}a^{2}-\frac{43\cdots 44}{64\cdots 45}a-\frac{36\cdots 31}{32\cdots 25}$, $\frac{70\cdots 83}{64\cdots 50}a^{9}+\frac{768176723131281}{64\cdots 50}a^{8}+\frac{19\cdots 71}{64\cdots 50}a^{7}-\frac{55\cdots 29}{64\cdots 50}a^{6}-\frac{30\cdots 37}{64\cdots 50}a^{5}-\frac{23\cdots 19}{64\cdots 50}a^{4}-\frac{46\cdots 72}{32\cdots 25}a^{3}-\frac{39\cdots 44}{32\cdots 25}a^{2}-\frac{28\cdots 04}{12\cdots 89}a+\frac{20\cdots 89}{32\cdots 25}$
|
| |
| Regulator: | \( 582192.1229160837 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{4}\cdot 582192.1229160837 \cdot 5}{2\cdot\sqrt{63580957267604373504}}\cr\approx \mathstrut & 1.13794760834986 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{6}) \), 5.1.180848704.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | 20.0.4042538127064933401151627374468337238016.3 |
| Degree 10 sibling: | 10.0.7947619658450546688.1 |
| Minimal sibling: | 10.0.7947619658450546688.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{4}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | ${\href{/padicField/7.2.0.1}{2} }^{5}$ | ${\href{/padicField/11.10.0.1}{10} }$ | ${\href{/padicField/13.2.0.1}{2} }^{5}$ | ${\href{/padicField/17.2.0.1}{2} }^{5}$ | ${\href{/padicField/19.5.0.1}{5} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{4}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{4}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{5}$ | ${\href{/padicField/37.2.0.1}{2} }^{5}$ | R | ${\href{/padicField/43.5.0.1}{5} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{4}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.3a1.2 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ |
| 2.2.2.6a1.1 | $x^{4} + 2 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ | |
| 2.2.2.6a1.1 | $x^{4} + 2 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ | |
|
\(3\)
| 3.5.2.5a1.2 | $x^{10} + 4 x^{6} + 2 x^{5} + 4 x^{2} + 4 x + 4$ | $2$ | $5$ | $5$ | $C_{10}$ | $$[\ ]_{2}^{5}$$ |
|
\(41\)
| 41.2.5.8a1.1 | $x^{10} + 190 x^{9} + 14470 x^{8} + 553280 x^{7} + 10685960 x^{6} + 85860848 x^{5} + 64115760 x^{4} + 19918080 x^{3} + 3125520 x^{2} + 246281 x + 7776$ | $5$ | $2$ | $8$ | $C_{10}$ | $$[\ ]_{5}^{2}$$ |