Normalized defining polynomial
\( x^{20} - 18 x^{18} + 55 x^{16} + 14 x^{14} + 14381 x^{12} - 190396 x^{10} + 1133340 x^{8} + \cdots + 2621440000 \)
Invariants
| Degree: | $20$ |
| |
| Signature: | $[0, 10]$ |
| |
| Discriminant: |
\(4042538127064933401151627374468337238016\)
\(\medspace = 2^{30}\cdot 3^{10}\cdot 41^{16}\)
|
| |
| Root discriminant: | \(95.57\) |
| |
| Galois root discriminant: | $2^{3/2}3^{1/2}41^{4/5}\approx 95.57244712596375$ | ||
| Ramified primes: |
\(2\), \(3\), \(41\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $D_{10}$ |
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-2}, \sqrt{-3})\) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{8}-\frac{1}{4}a^{6}-\frac{1}{4}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{7}-\frac{1}{4}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{4}$, $\frac{1}{40}a^{11}-\frac{1}{8}a^{10}+\frac{1}{10}a^{9}-\frac{1}{8}a^{8}+\frac{3}{20}a^{7}-\frac{1}{8}a^{6}+\frac{9}{40}a^{5}+\frac{3}{20}a^{3}+\frac{1}{10}a$, $\frac{1}{40}a^{12}-\frac{1}{40}a^{10}-\frac{1}{8}a^{9}+\frac{1}{40}a^{8}+\frac{1}{8}a^{7}+\frac{1}{10}a^{6}+\frac{1}{8}a^{5}+\frac{3}{20}a^{4}-\frac{1}{4}a^{3}-\frac{2}{5}a^{2}-\frac{1}{2}a$, $\frac{1}{320}a^{13}-\frac{1}{8}a^{10}-\frac{1}{64}a^{9}-\frac{1}{16}a^{7}-\frac{1}{4}a^{6}-\frac{3}{64}a^{5}-\frac{1}{8}a^{4}-\frac{1}{32}a^{3}+\frac{1}{4}a^{2}-\frac{39}{80}a$, $\frac{1}{1600}a^{14}+\frac{1}{200}a^{12}-\frac{53}{1600}a^{10}-\frac{1}{8}a^{9}+\frac{47}{400}a^{8}+\frac{1}{8}a^{7}-\frac{263}{1600}a^{6}+\frac{1}{8}a^{5}-\frac{181}{800}a^{4}+\frac{1}{4}a^{3}-\frac{111}{400}a^{2}$, $\frac{1}{3200}a^{15}-\frac{1}{1600}a^{13}-\frac{13}{3200}a^{11}-\frac{1}{8}a^{10}+\frac{199}{1600}a^{9}-\frac{623}{3200}a^{7}-\frac{163}{800}a^{5}+\frac{1}{8}a^{4}-\frac{113}{400}a^{3}+\frac{3}{80}a$, $\frac{1}{956800}a^{16}-\frac{57}{239200}a^{14}-\frac{257}{73600}a^{12}-\frac{11113}{119600}a^{10}+\frac{62969}{956800}a^{8}-\frac{1}{4}a^{7}-\frac{8647}{478400}a^{6}-\frac{1}{4}a^{5}-\frac{50253}{239200}a^{4}+\frac{1}{4}a^{3}-\frac{16701}{59800}a^{2}+\frac{24}{299}$, $\frac{1}{1913600}a^{17}-\frac{57}{478400}a^{15}+\frac{203}{147200}a^{13}+\frac{847}{239200}a^{11}-\frac{62611}{1913600}a^{9}+\frac{218593}{956800}a^{7}-\frac{1}{4}a^{6}+\frac{11501}{239200}a^{5}-\frac{1}{4}a^{4}-\frac{88717}{239200}a^{3}-\frac{1}{4}a^{2}-\frac{5917}{23920}a$, $\frac{1}{19\cdots 00}a^{18}+\frac{13\cdots 31}{76\cdots 00}a^{16}+\frac{60\cdots 27}{19\cdots 00}a^{14}-\frac{25\cdots 03}{42\cdots 00}a^{12}+\frac{65\cdots 73}{19\cdots 00}a^{10}-\frac{1}{8}a^{9}-\frac{34\cdots 47}{49\cdots 00}a^{8}+\frac{1}{8}a^{7}-\frac{55\cdots 17}{49\cdots 00}a^{6}+\frac{1}{8}a^{5}-\frac{17\cdots 79}{12\cdots 00}a^{4}-\frac{1}{4}a^{3}-\frac{18\cdots 39}{12\cdots 00}a^{2}-\frac{1}{2}a-\frac{34\cdots 29}{96\cdots 99}$, $\frac{1}{15\cdots 00}a^{19}-\frac{16\cdots 09}{79\cdots 00}a^{17}+\frac{10\cdots 11}{31\cdots 00}a^{15}+\frac{14\cdots 07}{79\cdots 00}a^{13}+\frac{71\cdots 81}{15\cdots 00}a^{11}-\frac{80\cdots 99}{39\cdots 00}a^{9}-\frac{12\cdots 21}{60\cdots 00}a^{7}-\frac{1}{4}a^{6}+\frac{62\cdots 17}{98\cdots 00}a^{5}-\frac{1}{4}a^{4}-\frac{31\cdots 39}{98\cdots 00}a^{3}-\frac{1}{4}a^{2}-\frac{48\cdots 61}{33\cdots 40}a$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{5}$, which has order $5$ (assuming GRH) |
| |
| Narrow class group: | $C_{5}$, which has order $5$ (assuming GRH) |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -\frac{818741277135451}{6610186581430046924800} a^{18} + \frac{4078724557837619}{3305093290715023462400} a^{16} + \frac{4240352965344791}{1322037316286009384960} a^{14} + \frac{75549284469326723}{3305093290715023462400} a^{12} - \frac{10579215681920276991}{6610186581430046924800} a^{10} + \frac{17627696584499532789}{1652546645357511731200} a^{8} - \frac{3511536789814515269}{66101865814300469248} a^{6} + \frac{183521130919604112373}{413136661339377932800} a^{4} - \frac{2541738577728122958331}{413136661339377932800} a^{2} + \frac{1312142301878950400}{32276301667138901} \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{2562571401}{35\cdots 00}a^{19}+\frac{818741277135451}{33\cdots 00}a^{18}-\frac{545632343}{773566963712000}a^{17}-\frac{40\cdots 19}{16\cdots 00}a^{16}-\frac{13434165789}{71\cdots 00}a^{15}-\frac{42\cdots 91}{66\cdots 80}a^{14}-\frac{255709940033}{17\cdots 00}a^{13}-\frac{75\cdots 23}{16\cdots 00}a^{12}+\frac{32964938455061}{35\cdots 00}a^{11}+\frac{10\cdots 91}{33\cdots 00}a^{10}-\frac{54687972297319}{88\cdots 00}a^{9}-\frac{17\cdots 89}{82\cdots 00}a^{8}+\frac{54848591725491}{17\cdots 00}a^{7}+\frac{35\cdots 69}{33\cdots 24}a^{6}-\frac{577650678019303}{22\cdots 00}a^{5}-\frac{18\cdots 73}{20\cdots 00}a^{4}+\frac{79\cdots 41}{22\cdots 00}a^{3}+\frac{25\cdots 31}{20\cdots 00}a^{2}-\frac{50637507680}{2171879903}a-\frac{25\cdots 99}{32\cdots 01}$, $\frac{71\cdots 51}{12\cdots 00}a^{19}+\frac{10\cdots 47}{98\cdots 00}a^{18}-\frac{18\cdots 73}{26\cdots 00}a^{17}-\frac{47\cdots 59}{49\cdots 00}a^{16}+\frac{35\cdots 01}{24\cdots 00}a^{15}+\frac{16\cdots 21}{98\cdots 00}a^{14}-\frac{92\cdots 03}{60\cdots 00}a^{13}+\frac{11\cdots 33}{98\cdots 60}a^{12}+\frac{96\cdots 51}{12\cdots 00}a^{11}+\frac{28\cdots 71}{39\cdots 04}a^{10}-\frac{33\cdots 29}{30\cdots 00}a^{9}-\frac{10\cdots 93}{49\cdots 80}a^{8}+\frac{15\cdots 73}{60\cdots 00}a^{7}+\frac{17\cdots 57}{24\cdots 00}a^{6}-\frac{15\cdots 13}{76\cdots 00}a^{5}-\frac{38\cdots 77}{61\cdots 00}a^{4}+\frac{39\cdots 31}{76\cdots 00}a^{3}+\frac{65\cdots 99}{61\cdots 00}a^{2}-\frac{16\cdots 80}{74\cdots 23}a-\frac{53\cdots 71}{96\cdots 99}$, $\frac{79\cdots 53}{15\cdots 00}a^{19}-\frac{14\cdots 41}{98\cdots 00}a^{18}-\frac{40\cdots 17}{79\cdots 00}a^{17}+\frac{15\cdots 53}{98\cdots 60}a^{16}-\frac{36\cdots 61}{31\cdots 00}a^{15}+\frac{19\cdots 17}{98\cdots 00}a^{14}-\frac{81\cdots 29}{79\cdots 00}a^{13}+\frac{14\cdots 09}{49\cdots 00}a^{12}+\frac{79\cdots 61}{12\cdots 00}a^{11}-\frac{18\cdots 13}{98\cdots 00}a^{10}-\frac{17\cdots 47}{39\cdots 00}a^{9}+\frac{34\cdots 47}{24\cdots 00}a^{8}+\frac{17\cdots 51}{79\cdots 00}a^{7}-\frac{15\cdots 71}{19\cdots 00}a^{6}-\frac{18\cdots 19}{98\cdots 00}a^{5}+\frac{40\cdots 03}{61\cdots 00}a^{4}+\frac{24\cdots 53}{98\cdots 00}a^{3}-\frac{92\cdots 41}{12\cdots 20}a^{2}-\frac{12\cdots 03}{77\cdots 20}a+\frac{44\cdots 69}{96\cdots 99}$, $\frac{17\cdots 57}{15\cdots 00}a^{19}-\frac{18\cdots 43}{19\cdots 00}a^{18}-\frac{26\cdots 21}{60\cdots 00}a^{17}-\frac{58\cdots 89}{98\cdots 00}a^{16}+\frac{22\cdots 99}{31\cdots 00}a^{15}+\frac{13\cdots 23}{79\cdots 08}a^{14}+\frac{50\cdots 59}{79\cdots 00}a^{13}-\frac{10\cdots 49}{98\cdots 00}a^{12}-\frac{58\cdots 03}{15\cdots 00}a^{11}+\frac{97\cdots 73}{19\cdots 00}a^{10}-\frac{14\cdots 63}{39\cdots 00}a^{9}-\frac{42\cdots 67}{49\cdots 00}a^{8}+\frac{54\cdots 43}{79\cdots 00}a^{7}+\frac{48\cdots 19}{49\cdots 00}a^{6}-\frac{30\cdots 91}{98\cdots 00}a^{5}-\frac{42\cdots 91}{24\cdots 40}a^{4}-\frac{30\cdots 03}{98\cdots 00}a^{3}+\frac{12\cdots 73}{12\cdots 00}a^{2}+\frac{92\cdots 63}{19\cdots 80}a-\frac{16\cdots 28}{96\cdots 99}$, $\frac{71\cdots 51}{12\cdots 00}a^{19}-\frac{10\cdots 47}{98\cdots 00}a^{18}-\frac{18\cdots 73}{26\cdots 00}a^{17}+\frac{47\cdots 59}{49\cdots 00}a^{16}+\frac{35\cdots 01}{24\cdots 00}a^{15}-\frac{16\cdots 21}{98\cdots 00}a^{14}-\frac{92\cdots 03}{60\cdots 00}a^{13}-\frac{11\cdots 33}{98\cdots 60}a^{12}+\frac{96\cdots 51}{12\cdots 00}a^{11}-\frac{28\cdots 71}{39\cdots 04}a^{10}-\frac{33\cdots 29}{30\cdots 00}a^{9}+\frac{10\cdots 93}{49\cdots 80}a^{8}+\frac{15\cdots 73}{60\cdots 00}a^{7}-\frac{17\cdots 57}{24\cdots 00}a^{6}-\frac{15\cdots 13}{76\cdots 00}a^{5}+\frac{38\cdots 77}{61\cdots 00}a^{4}+\frac{39\cdots 31}{76\cdots 00}a^{3}-\frac{65\cdots 99}{61\cdots 00}a^{2}-\frac{16\cdots 80}{74\cdots 23}a+\frac{53\cdots 71}{96\cdots 99}$, $\frac{74\cdots 81}{31\cdots 00}a^{19}+\frac{16\cdots 01}{24\cdots 00}a^{18}-\frac{75\cdots 53}{31\cdots 20}a^{17}-\frac{81\cdots 09}{12\cdots 00}a^{16}-\frac{71\cdots 61}{12\cdots 28}a^{15}-\frac{17\cdots 51}{10\cdots 00}a^{14}-\frac{67\cdots 41}{15\cdots 00}a^{13}-\frac{30\cdots 01}{24\cdots 40}a^{12}+\frac{95\cdots 77}{31\cdots 00}a^{11}+\frac{42\cdots 13}{49\cdots 80}a^{10}-\frac{16\cdots 83}{79\cdots 00}a^{9}-\frac{70\cdots 53}{12\cdots 20}a^{8}+\frac{83\cdots 99}{79\cdots 00}a^{7}+\frac{18\cdots 51}{61\cdots 00}a^{6}-\frac{73\cdots 69}{85\cdots 00}a^{5}-\frac{29\cdots 49}{11\cdots 00}a^{4}+\frac{23\cdots 17}{19\cdots 00}a^{3}+\frac{50\cdots 13}{15\cdots 00}a^{2}-\frac{61\cdots 39}{77\cdots 20}a-\frac{21\cdots 57}{96\cdots 99}$, $\frac{24\cdots 37}{63\cdots 40}a^{19}+\frac{14\cdots 23}{19\cdots 00}a^{18}-\frac{66\cdots 13}{15\cdots 00}a^{17}-\frac{59\cdots 39}{98\cdots 00}a^{16}-\frac{26\cdots 21}{31\cdots 00}a^{15}-\frac{45\cdots 11}{15\cdots 00}a^{14}-\frac{54\cdots 33}{15\cdots 00}a^{13}-\frac{20\cdots 27}{98\cdots 00}a^{12}+\frac{12\cdots 77}{24\cdots 00}a^{11}+\frac{17\cdots 19}{19\cdots 00}a^{10}-\frac{29\cdots 39}{79\cdots 00}a^{9}-\frac{23\cdots 81}{49\cdots 00}a^{8}+\frac{12\cdots 99}{79\cdots 00}a^{7}+\frac{12\cdots 09}{49\cdots 00}a^{6}-\frac{10\cdots 91}{79\cdots 08}a^{5}-\frac{23\cdots 61}{12\cdots 00}a^{4}+\frac{36\cdots 17}{19\cdots 00}a^{3}+\frac{39\cdots 67}{12\cdots 00}a^{2}-\frac{42\cdots 13}{38\cdots 60}a-\frac{18\cdots 68}{74\cdots 23}$, $\frac{71\cdots 51}{15\cdots 00}a^{19}+\frac{27\cdots 27}{19\cdots 00}a^{18}-\frac{24\cdots 79}{79\cdots 00}a^{17}-\frac{22\cdots 69}{42\cdots 00}a^{16}-\frac{15\cdots 11}{31\cdots 00}a^{15}-\frac{23\cdots 51}{19\cdots 00}a^{14}-\frac{29\cdots 43}{79\cdots 00}a^{13}-\frac{12\cdots 67}{98\cdots 00}a^{12}+\frac{12\cdots 31}{15\cdots 00}a^{11}+\frac{33\cdots 59}{19\cdots 00}a^{10}-\frac{18\cdots 49}{39\cdots 00}a^{9}-\frac{44\cdots 21}{49\cdots 00}a^{8}+\frac{20\cdots 09}{60\cdots 00}a^{7}+\frac{28\cdots 93}{49\cdots 00}a^{6}-\frac{25\cdots 93}{98\cdots 00}a^{5}-\frac{13\cdots 29}{24\cdots 40}a^{4}+\frac{28\cdots 71}{98\cdots 00}a^{3}+\frac{21\cdots 91}{24\cdots 40}a^{2}-\frac{11\cdots 97}{96\cdots 90}a-\frac{38\cdots 17}{96\cdots 99}$, $\frac{17\cdots 57}{15\cdots 00}a^{19}+\frac{18\cdots 43}{19\cdots 00}a^{18}-\frac{26\cdots 21}{60\cdots 00}a^{17}+\frac{58\cdots 89}{98\cdots 00}a^{16}+\frac{22\cdots 99}{31\cdots 00}a^{15}-\frac{13\cdots 23}{79\cdots 08}a^{14}+\frac{50\cdots 59}{79\cdots 00}a^{13}+\frac{10\cdots 49}{98\cdots 00}a^{12}-\frac{58\cdots 03}{15\cdots 00}a^{11}-\frac{97\cdots 73}{19\cdots 00}a^{10}-\frac{14\cdots 63}{39\cdots 00}a^{9}+\frac{42\cdots 67}{49\cdots 00}a^{8}+\frac{54\cdots 43}{79\cdots 00}a^{7}-\frac{48\cdots 19}{49\cdots 00}a^{6}-\frac{30\cdots 91}{98\cdots 00}a^{5}+\frac{42\cdots 91}{24\cdots 40}a^{4}-\frac{30\cdots 03}{98\cdots 00}a^{3}-\frac{12\cdots 73}{12\cdots 00}a^{2}+\frac{92\cdots 63}{19\cdots 80}a+\frac{16\cdots 28}{96\cdots 99}$
|
| |
| Regulator: | \( 739275400192 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{10}\cdot 739275400192 \cdot 5}{6\cdot\sqrt{4042538127064933401151627374468337238016}}\cr\approx \mathstrut & 0.929173104237558 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-2}, \sqrt{-3})\), 5.1.180848704.2 x5, 10.0.261650029907836928.2, 10.2.63580957267604373504.1 x5, 10.0.7947619658450546688.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | 10.2.63580957267604373504.1, 10.0.7947619658450546688.1 |
| Minimal sibling: | 10.0.7947619658450546688.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{10}$ | ${\href{/padicField/7.2.0.1}{2} }^{10}$ | ${\href{/padicField/11.10.0.1}{10} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{10}$ | ${\href{/padicField/17.2.0.1}{2} }^{10}$ | ${\href{/padicField/19.5.0.1}{5} }^{4}$ | ${\href{/padicField/23.2.0.1}{2} }^{10}$ | ${\href{/padicField/29.2.0.1}{2} }^{10}$ | ${\href{/padicField/31.2.0.1}{2} }^{10}$ | ${\href{/padicField/37.2.0.1}{2} }^{10}$ | R | ${\href{/padicField/43.5.0.1}{5} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{10}$ | ${\href{/padicField/53.2.0.1}{2} }^{10}$ | ${\href{/padicField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.2.6a1.1 | $x^{4} + 2 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ |
| 2.2.2.6a1.1 | $x^{4} + 2 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ | |
| 2.2.2.6a1.1 | $x^{4} + 2 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ | |
| 2.2.2.6a1.1 | $x^{4} + 2 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ | |
| 2.2.2.6a1.1 | $x^{4} + 2 x^{3} + 3 x^{2} + 2 x + 3$ | $2$ | $2$ | $6$ | $C_2^2$ | $$[3]^{2}$$ | |
|
\(3\)
| 3.5.2.5a1.2 | $x^{10} + 4 x^{6} + 2 x^{5} + 4 x^{2} + 4 x + 4$ | $2$ | $5$ | $5$ | $C_{10}$ | $$[\ ]_{2}^{5}$$ |
| 3.5.2.5a1.2 | $x^{10} + 4 x^{6} + 2 x^{5} + 4 x^{2} + 4 x + 4$ | $2$ | $5$ | $5$ | $C_{10}$ | $$[\ ]_{2}^{5}$$ | |
|
\(41\)
| 41.2.5.8a1.1 | $x^{10} + 190 x^{9} + 14470 x^{8} + 553280 x^{7} + 10685960 x^{6} + 85860848 x^{5} + 64115760 x^{4} + 19918080 x^{3} + 3125520 x^{2} + 246281 x + 7776$ | $5$ | $2$ | $8$ | $C_{10}$ | $$[\ ]_{5}^{2}$$ |
| 41.2.5.8a1.1 | $x^{10} + 190 x^{9} + 14470 x^{8} + 553280 x^{7} + 10685960 x^{6} + 85860848 x^{5} + 64115760 x^{4} + 19918080 x^{3} + 3125520 x^{2} + 246281 x + 7776$ | $5$ | $2$ | $8$ | $C_{10}$ | $$[\ ]_{5}^{2}$$ |