Show commands: Magma
Group invariants
| Abstract group: | $D_{10}$ |
| |
| Order: | $20=2^{2} \cdot 5$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $10$ |
| |
| Transitive number $t$: | $3$ |
| |
| CHM label: | $D_{10}(10)=[D(5)]2$ | ||
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,2,3,4,5,6,7,8,9,10)$, $(1,8)(2,7)(3,6)(4,5)(9,10)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $10$: $D_{5}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 5: $D_{5}$
Low degree siblings
10T3, 20T4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{10}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{5}$ | $1$ | $2$ | $5$ | $( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5,10)$ |
| 2B | $2^{4},1^{2}$ | $5$ | $2$ | $4$ | $( 2,10)( 3, 9)( 4, 8)( 5, 7)$ |
| 2C | $2^{5}$ | $5$ | $2$ | $5$ | $( 1,10)( 2, 9)( 3, 8)( 4, 7)( 5, 6)$ |
| 5A1 | $5^{2}$ | $2$ | $5$ | $8$ | $( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10)$ |
| 5A2 | $5^{2}$ | $2$ | $5$ | $8$ | $( 1, 5, 9, 3, 7)( 2, 6,10, 4, 8)$ |
| 10A1 | $10$ | $2$ | $10$ | $9$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10)$ |
| 10A3 | $10$ | $2$ | $10$ | $9$ | $( 1, 4, 7,10, 3, 6, 9, 2, 5, 8)$ |
Malle's constant $a(G)$: $1/4$
Character table
| 1A | 2A | 2B | 2C | 5A1 | 5A2 | 10A1 | 10A3 | ||
| Size | 1 | 1 | 5 | 5 | 2 | 2 | 2 | 2 | |
| 2 P | 1A | 1A | 1A | 1A | 5A2 | 5A1 | 5A1 | 5A2 | |
| 5 P | 1A | 2A | 2B | 2C | 1A | 1A | 2A | 2A | |
| Type | |||||||||
| 20.4.1a | R | ||||||||
| 20.4.1b | R | ||||||||
| 20.4.1c | R | ||||||||
| 20.4.1d | R | ||||||||
| 20.4.2a1 | R | ||||||||
| 20.4.2a2 | R | ||||||||
| 20.4.2b1 | R | ||||||||
| 20.4.2b2 | R |
Regular extensions
| $f_{ 1 } =$ |
$x^{10} + \left(t + 10\right) x^{8} + \left(-20 t + 33\right) x^{6} + \left(132 t + 40\right) x^{4} + \left(-320 t + 16\right) x^{2} + 256 t$
|