Group action invariants
| Degree $n$ : | $10$ | |
| Transitive number $t$ : | $3$ | |
| Group : | $D_{10}$ | |
| CHM label : | $D_{10}(10)=[D(5)]2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,3,4,5,6,7,8,9,10), (1,8)(2,7)(3,6)(4,5)(9,10) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 10: $D_{5}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 5: $D_{5}$
Low degree siblings
10T3, 20T4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1 $ | $5$ | $2$ | $( 2,10)( 3, 9)( 4, 8)( 5, 7)$ |
| $ 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 2)( 3,10)( 4, 9)( 5, 8)( 6, 7)$ |
| $ 10 $ | $2$ | $10$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10)$ |
| $ 5, 5 $ | $2$ | $5$ | $( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10)$ |
| $ 10 $ | $2$ | $10$ | $( 1, 4, 7,10, 3, 6, 9, 2, 5, 8)$ |
| $ 5, 5 $ | $2$ | $5$ | $( 1, 5, 9, 3, 7)( 2, 6,10, 4, 8)$ |
| $ 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5,10)$ |
Group invariants
| Order: | $20=2^{2} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [20, 4] |
| Character table: |
2 2 2 2 1 1 1 1 2
5 1 . . 1 1 1 1 1
1a 2a 2b 10a 5a 10b 5b 2c
2P 1a 1a 1a 5a 5b 5b 5a 1a
3P 1a 2a 2b 10b 5b 10a 5a 2c
5P 1a 2a 2b 2c 1a 2c 1a 2c
7P 1a 2a 2b 10b 5b 10a 5a 2c
X.1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 1 1 1
X.3 1 -1 1 -1 1 -1 1 -1
X.4 1 1 -1 -1 1 -1 1 -1
X.5 2 . . A -*A *A -A -2
X.6 2 . . *A -A A -*A -2
X.7 2 . . -*A -A -A -*A 2
X.8 2 . . -A -*A -*A -A 2
A = -E(5)-E(5)^4
= (1-Sqrt(5))/2 = -b5
|