Properties

Label 10T3
10T3 1 2 1->2 8 1->8 3 2->3 7 2->7 4 3->4 6 3->6 5 4->5 4->5 5->6 6->7 7->8 9 8->9 10 9->10 9->10 10->1
Degree $10$
Order $20$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $D_{10}$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(10, 3);
 

Group invariants

Abstract group:  $D_{10}$
Copy content magma:IdentifyGroup(G);
 
Order:  $20=2^{2} \cdot 5$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $10$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $3$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
CHM label:   $D_{10}(10)=[D(5)]2$
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $2$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,2,3,4,5,6,7,8,9,10)$, $(1,8)(2,7)(3,6)(4,5)(9,10)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 3
$4$:  $C_2^2$
$10$:  $D_{5}$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 5: $D_{5}$

Low degree siblings

10T3, 20T4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{10}$ $1$ $1$ $0$ $()$
2A $2^{5}$ $1$ $2$ $5$ $( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5,10)$
2B $2^{4},1^{2}$ $5$ $2$ $4$ $( 2,10)( 3, 9)( 4, 8)( 5, 7)$
2C $2^{5}$ $5$ $2$ $5$ $( 1,10)( 2, 9)( 3, 8)( 4, 7)( 5, 6)$
5A1 $5^{2}$ $2$ $5$ $8$ $( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10)$
5A2 $5^{2}$ $2$ $5$ $8$ $( 1, 5, 9, 3, 7)( 2, 6,10, 4, 8)$
10A1 $10$ $2$ $10$ $9$ $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10)$
10A3 $10$ $2$ $10$ $9$ $( 1, 4, 7,10, 3, 6, 9, 2, 5, 8)$

Malle's constant $a(G)$:     $1/4$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 2B 2C 5A1 5A2 10A1 10A3
Size 1 1 5 5 2 2 2 2
2 P 1A 1A 1A 1A 5A2 5A1 5A1 5A2
5 P 1A 2A 2B 2C 1A 1A 2A 2A
Type
20.4.1a R 1 1 1 1 1 1 1 1
20.4.1b R 1 1 1 1 1 1 1 1
20.4.1c R 1 1 1 1 1 1 1 1
20.4.1d R 1 1 1 1 1 1 1 1
20.4.2a1 R 2 2 0 0 ζ52+ζ52 ζ51+ζ5 ζ51+ζ5 ζ52+ζ52
20.4.2a2 R 2 2 0 0 ζ51+ζ5 ζ52+ζ52 ζ52+ζ52 ζ51+ζ5
20.4.2b1 R 2 2 0 0 ζ52+ζ52 ζ51+ζ5 ζ51ζ5 ζ52ζ52
20.4.2b2 R 2 2 0 0 ζ51+ζ5 ζ52+ζ52 ζ52ζ52 ζ51ζ5

Copy content magma:CharacterTable(G);
 

Regular extensions

$f_{ 1 } =$ $x^{10} + \left(t + 10\right) x^{8} + \left(-20 t + 33\right) x^{6} + \left(132 t + 40\right) x^{4} + \left(-320 t + 16\right) x^{2} + 256 t$ Copy content Toggle raw display