Normalized defining polynomial
\( x^{10} - x^{9} + 1657 x^{8} - 88452 x^{7} + 3254031 x^{6} - 73793268 x^{5} + 1258854858 x^{4} + \cdots + 3060533315844 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[0, 5]$ |
| |
| Discriminant: |
\(-328297929417981191324536447481296875\)
\(\medspace = -\,3^{5}\cdot 5^{6}\cdot 41^{8}\cdot 101^{8}\)
|
| |
| Root discriminant: | \(3561.45\) |
| |
| Galois root discriminant: | $3^{1/2}5^{3/4}41^{4/5}101^{4/5}\approx 4533.903945636803$ | ||
| Ramified primes: |
\(3\), \(5\), \(41\), \(101\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-3}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}a$, $\frac{1}{9}a^{4}-\frac{1}{9}a^{3}+\frac{1}{9}a^{2}$, $\frac{1}{27}a^{5}-\frac{1}{27}a^{4}+\frac{1}{27}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a$, $\frac{1}{81}a^{6}-\frac{1}{81}a^{5}+\frac{1}{81}a^{4}+\frac{1}{9}a^{3}+\frac{1}{9}a^{2}-\frac{1}{3}a$, $\frac{1}{243}a^{7}-\frac{1}{243}a^{6}+\frac{1}{243}a^{5}+\frac{1}{27}a^{4}+\frac{1}{27}a^{3}-\frac{1}{9}a^{2}+\frac{1}{3}a$, $\frac{1}{729}a^{8}-\frac{1}{729}a^{7}+\frac{1}{729}a^{6}+\frac{1}{81}a^{5}+\frac{1}{81}a^{4}-\frac{1}{27}a^{3}-\frac{2}{9}a^{2}+\frac{1}{3}a$, $\frac{1}{38\cdots 94}a^{9}-\frac{94\cdots 77}{38\cdots 94}a^{8}+\frac{55\cdots 77}{38\cdots 94}a^{7}+\frac{14\cdots 01}{64\cdots 99}a^{6}+\frac{16\cdots 07}{15\cdots 58}a^{5}+\frac{29\cdots 62}{71\cdots 11}a^{4}+\frac{14\cdots 70}{23\cdots 37}a^{3}+\frac{21\cdots 17}{79\cdots 79}a^{2}+\frac{22\cdots 03}{53\cdots 86}a-\frac{90\cdots 48}{81\cdots 69}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{5}\times C_{5}$, which has order $25$ (assuming GRH) |
| |
| Narrow class group: | $C_{5}\times C_{5}$, which has order $25$ (assuming GRH) |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -\frac{40602171877053521165}{12893137360545172615908759439398} a^{9} - \frac{227386397190633517973}{12893137360545172615908759439398} a^{8} - \frac{69906364434606779918773}{12893137360545172615908759439398} a^{7} + \frac{1558939838376706766145490}{6446568680272586307954379719699} a^{6} - \frac{12634820456502377880185921}{1432570817838352512878751048822} a^{5} + \frac{128964259652569376332968706}{716285408919176256439375524411} a^{4} - \frac{240035795464021323280691641}{79587267657686250715486169379} a^{3} + \frac{2578947370292745903713776190}{79587267657686250715486169379} a^{2} - \frac{5789484371518170621891361857}{17686059479485833492330259862} a + \frac{1568626800075677406212821}{818874871723577807775269} \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{10\cdots 20}{59\cdots 01}a^{9}+\frac{51\cdots 05}{66\cdots 89}a^{8}+\frac{92\cdots 25}{66\cdots 89}a^{7}-\frac{46\cdots 11}{59\cdots 01}a^{6}+\frac{14\cdots 80}{73\cdots 21}a^{5}-\frac{29\cdots 55}{81\cdots 69}a^{4}+\frac{99\cdots 59}{22\cdots 63}a^{3}-\frac{34\cdots 70}{81\cdots 69}a^{2}+\frac{20\cdots 80}{81\cdots 69}a-\frac{77\cdots 17}{81\cdots 69}$, $\frac{83\cdots 29}{38\cdots 94}a^{9}+\frac{58\cdots 93}{38\cdots 94}a^{8}-\frac{31\cdots 79}{38\cdots 94}a^{7}+\frac{17\cdots 41}{64\cdots 99}a^{6}-\frac{82\cdots 35}{14\cdots 22}a^{5}+\frac{22\cdots 65}{23\cdots 37}a^{4}-\frac{85\cdots 49}{79\cdots 79}a^{3}+\frac{74\cdots 79}{79\cdots 79}a^{2}-\frac{93\cdots 67}{17\cdots 62}a+\frac{15\cdots 56}{81\cdots 69}$, $\frac{92\cdots 01}{12\cdots 98}a^{9}+\frac{14\cdots 53}{14\cdots 22}a^{8}+\frac{46\cdots 51}{42\cdots 66}a^{7}-\frac{41\cdots 36}{64\cdots 99}a^{6}+\frac{89\cdots 91}{42\cdots 66}a^{5}-\frac{10\cdots 93}{23\cdots 37}a^{4}+\frac{15\cdots 42}{26\cdots 93}a^{3}-\frac{15\cdots 99}{26\cdots 93}a^{2}+\frac{20\cdots 41}{53\cdots 86}a-\frac{10\cdots 28}{81\cdots 69}$, $\frac{60\cdots 10}{19\cdots 97}a^{9}+\frac{10\cdots 44}{19\cdots 97}a^{8}-\frac{88\cdots 61}{19\cdots 97}a^{7}+\frac{18\cdots 02}{64\cdots 99}a^{6}-\frac{22\cdots 21}{23\cdots 37}a^{5}+\frac{13\cdots 46}{71\cdots 11}a^{4}-\frac{19\cdots 58}{79\cdots 79}a^{3}+\frac{17\cdots 54}{79\cdots 79}a^{2}-\frac{31\cdots 82}{26\cdots 93}a+\frac{23\cdots 41}{81\cdots 69}$
|
| |
| Regulator: | \( 9311135404024.12 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 9311135404024.12 \cdot 25}{6\cdot\sqrt{328297929417981191324536447481296875}}\cr\approx \mathstrut & 0.663065864650041 \end{aligned}\] (assuming GRH)
Galois group
$C_2\times F_5$ (as 10T5):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $F_{5}\times C_2$ |
| Character table for $F_{5}\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.1.36756227848770125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.4.0.1}{4} }^{2}{,}\,{\href{/padicField/2.2.0.1}{2} }$ | R | R | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.10.0.1}{10} }$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.2.0.1}{2} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.2.0.1}{2} }^{5}$ | ${\href{/padicField/31.5.0.1}{5} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
|
\(5\)
| 5.2.1.0a1.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 5.2.4.6a1.2 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 128 x + 21$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ | |
|
\(41\)
| 41.2.5.8a1.1 | $x^{10} + 190 x^{9} + 14470 x^{8} + 553280 x^{7} + 10685960 x^{6} + 85860848 x^{5} + 64115760 x^{4} + 19918080 x^{3} + 3125520 x^{2} + 246281 x + 7776$ | $5$ | $2$ | $8$ | $C_{10}$ | $$[\ ]_{5}^{2}$$ |
|
\(101\)
| 101.2.5.8a1.2 | $x^{10} + 485 x^{9} + 94100 x^{8} + 9130610 x^{7} + 443210985 x^{6} + 8623858817 x^{5} + 886421970 x^{4} + 36522440 x^{3} + 752800 x^{2} + 7760 x + 133$ | $5$ | $2$ | $8$ | $C_{10}$ | $$[\ ]_{5}^{2}$$ |