Normalized defining polynomial
\( x^{10} + 205 x^{8} + 36285 x^{6} - 767889 x^{5} + 5715400 x^{4} - 21180600 x^{3} + 18877630 x^{2} + \cdots + 43616907 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[0, 5]$ |
| |
| Discriminant: |
\(-296071904094910125732421875\)
\(\medspace = -\,3^{5}\cdot 5^{16}\cdot 41^{8}\)
|
| |
| Root discriminant: | \(443.75\) |
| |
| Galois root discriminant: | $3^{1/2}5^{8/5}41^{4/5}\approx 443.7513830832364$ | ||
| Ramified primes: |
\(3\), \(5\), \(41\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-3}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{123}a^{5}+\frac{1}{3}a^{3}-\frac{1}{3}a$, $\frac{1}{123}a^{6}+\frac{1}{3}a^{4}-\frac{1}{3}a^{2}$, $\frac{1}{123}a^{7}-\frac{1}{3}a$, $\frac{1}{6053691}a^{8}+\frac{12637}{6053691}a^{7}-\frac{479}{288271}a^{6}-\frac{998}{2017897}a^{5}-\frac{10358}{49217}a^{4}+\frac{6050}{49217}a^{3}+\frac{42608}{147651}a^{2}+\frac{6122}{147651}a-\frac{14675}{49217}$, $\frac{1}{19\cdots 81}a^{9}-\frac{62542869266}{63\cdots 51}a^{8}-\frac{12\cdots 96}{65\cdots 27}a^{7}+\frac{21\cdots 89}{63\cdots 51}a^{6}-\frac{34\cdots 85}{93\cdots 61}a^{5}-\frac{19\cdots 65}{47\cdots 41}a^{4}-\frac{19\cdots 84}{47\cdots 41}a^{3}-\frac{37\cdots 25}{47\cdots 41}a^{2}+\frac{67\cdots 86}{15\cdots 47}a+\frac{10\cdots 01}{51\cdots 37}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{5}\times C_{15}$, which has order $75$ (assuming GRH) |
| |
| Narrow class group: | $C_{5}\times C_{15}$, which has order $75$ (assuming GRH) |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( \frac{24633250}{39911933654592393} a^{9} + \frac{180234785}{1287481730793303} a^{8} + \frac{27854147230}{39911933654592393} a^{7} + \frac{13571419985}{429160576931101} a^{6} + \frac{2075753560613}{13303977884864131} a^{5} + \frac{1723268669625}{324487265484491} a^{4} - \frac{77006311085860}{973461796453473} a^{3} + \frac{464239961384440}{973461796453473} a^{2} - \frac{1162768760687215}{973461796453473} a - \frac{5850603705278}{10467331144661} \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{546264208245130}{63\cdots 51}a^{9}+\frac{24\cdots 86}{63\cdots 51}a^{8}+\frac{12\cdots 51}{63\cdots 51}a^{7}+\frac{21\cdots 35}{23\cdots 53}a^{6}+\frac{56\cdots 85}{15\cdots 11}a^{5}-\frac{36\cdots 40}{73\cdots 91}a^{4}+\frac{21\cdots 73}{73\cdots 91}a^{3}-\frac{10\cdots 43}{15\cdots 11}a^{2}-\frac{77\cdots 10}{51\cdots 37}a-\frac{45\cdots 34}{51\cdots 37}$, $\frac{97\cdots 38}{93\cdots 61}a^{9}+\frac{27\cdots 02}{63\cdots 51}a^{8}+\frac{44\cdots 06}{19\cdots 81}a^{7}+\frac{83\cdots 13}{90\cdots 93}a^{6}+\frac{65\cdots 83}{15\cdots 47}a^{5}-\frac{30\cdots 80}{47\cdots 41}a^{4}+\frac{51\cdots 64}{15\cdots 47}a^{3}-\frac{39\cdots 84}{47\cdots 41}a^{2}-\frac{85\cdots 15}{47\cdots 41}a-\frac{59\cdots 85}{57\cdots 33}$, $\frac{32\cdots 22}{21\cdots 17}a^{9}+\frac{11\cdots 10}{63\cdots 51}a^{8}+\frac{27\cdots 58}{63\cdots 51}a^{7}-\frac{26\cdots 63}{23\cdots 53}a^{6}+\frac{13\cdots 30}{15\cdots 11}a^{5}-\frac{26\cdots 66}{73\cdots 91}a^{4}+\frac{10\cdots 85}{22\cdots 73}a^{3}+\frac{10\cdots 86}{15\cdots 11}a^{2}-\frac{35\cdots 30}{51\cdots 37}a-\frac{22\cdots 44}{51\cdots 37}$, $\frac{52\cdots 88}{65\cdots 27}a^{9}-\frac{14\cdots 64}{30\cdots 31}a^{8}-\frac{25\cdots 73}{65\cdots 27}a^{7}-\frac{77\cdots 42}{21\cdots 17}a^{6}+\frac{19\cdots 52}{19\cdots 81}a^{5}-\frac{14\cdots 16}{15\cdots 47}a^{4}+\frac{18\cdots 83}{47\cdots 41}a^{3}-\frac{60\cdots 47}{15\cdots 47}a^{2}-\frac{59\cdots 36}{47\cdots 41}a-\frac{41\cdots 81}{51\cdots 37}$
|
| |
| Regulator: | \( 102270212.80456363 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{5}\cdot 102270212.80456363 \cdot 75}{6\cdot\sqrt{296071904094910125732421875}}\cr\approx \mathstrut & 0.727545093246026 \end{aligned}\] (assuming GRH)
Galois group
$C_2\times A_5$ (as 10T11):
| A non-solvable group of order 120 |
| The 10 conjugacy class representatives for $A_5\times C_2$ |
| Character table for $A_5\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.1.9934316015625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | 12.4.98690634698303375244140625.1, deg 12 |
| Degree 20 siblings: | deg 20, deg 20 |
| Degree 24 sibling: | deg 24 |
| Degree 30 siblings: | deg 30, deg 30 |
| Degree 40 sibling: | deg 40 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.10.0.1}{10} }$ | R | R | ${\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{4}$ | ${\href{/padicField/11.10.0.1}{10} }$ | ${\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{4}$ | ${\href{/padicField/17.10.0.1}{10} }$ | ${\href{/padicField/19.5.0.1}{5} }^{2}$ | ${\href{/padicField/23.10.0.1}{10} }$ | ${\href{/padicField/29.10.0.1}{10} }$ | ${\href{/padicField/31.2.0.1}{2} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }^{4}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/43.5.0.1}{5} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ | ${\href{/padicField/53.10.0.1}{10} }$ | ${\href{/padicField/59.10.0.1}{10} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(5\)
| 5.2.5.16a4.5 | $x^{10} + 20 x^{9} + 190 x^{8} + 1120 x^{7} + 4360 x^{6} + 11104 x^{5} + 17840 x^{4} + 17280 x^{3} + 9680 x^{2} + 2880 x + 457$ | $5$ | $2$ | $16$ | $C_{10}$ | $$[2]^{2}$$ |
|
\(41\)
| 41.2.5.8a1.1 | $x^{10} + 190 x^{9} + 14470 x^{8} + 553280 x^{7} + 10685960 x^{6} + 85860848 x^{5} + 64115760 x^{4} + 19918080 x^{3} + 3125520 x^{2} + 246281 x + 7776$ | $5$ | $2$ | $8$ | $C_{10}$ | $$[\ ]_{5}^{2}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *120 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| *120 | 1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
| 3.3151875.12t76.a.a | $3$ | $ 3 \cdot 5^{4} \cdot 41^{2}$ | 10.0.296071904094910125732421875.1 | $A_5\times C_2$ (as 10T11) | $1$ | $1$ | |
| 3.9455625.12t33.a.a | $3$ | $ 3^{2} \cdot 5^{4} \cdot 41^{2}$ | 5.1.9934316015625.2 | $A_5$ (as 5T4) | $1$ | $-1$ | |
| 3.9455625.12t33.a.b | $3$ | $ 3^{2} \cdot 5^{4} \cdot 41^{2}$ | 5.1.9934316015625.2 | $A_5$ (as 5T4) | $1$ | $-1$ | |
| 3.3151875.12t76.a.b | $3$ | $ 3 \cdot 5^{4} \cdot 41^{2}$ | 10.0.296071904094910125732421875.1 | $A_5\times C_2$ (as 10T11) | $1$ | $1$ | |
| *120 | 4.993...625.5t4.a.a | $4$ | $ 3^{2} \cdot 5^{8} \cdot 41^{4}$ | 5.1.9934316015625.2 | $A_5$ (as 5T4) | $1$ | $0$ |
| *120 | 4.993...625.10t11.a.a | $4$ | $ 3^{2} \cdot 5^{8} \cdot 41^{4}$ | 10.0.296071904094910125732421875.1 | $A_5\times C_2$ (as 10T11) | $1$ | $0$ |
| 5.993...625.6t12.a.a | $5$ | $ 3^{2} \cdot 5^{8} \cdot 41^{4}$ | 5.1.9934316015625.2 | $A_5$ (as 5T4) | $1$ | $1$ | |
| 5.298...875.12t75.a.a | $5$ | $ 3^{3} \cdot 5^{8} \cdot 41^{4}$ | 10.0.296071904094910125732421875.1 | $A_5\times C_2$ (as 10T11) | $1$ | $-1$ |