Normalized defining polynomial
\( x^{12} - x^{11} + 22 x^{10} + 65 x^{9} - 755 x^{8} + 3669 x^{7} - 13894 x^{6} + 8118 x^{5} + \cdots - 753743 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[4, 4]$ |
| |
| Discriminant: |
\(98690634698303375244140625\)
\(\medspace = 3^{4}\cdot 5^{16}\cdot 41^{8}\)
|
| |
| Root discriminant: | \(146.62\) |
| |
| Galois root discriminant: | $3^{1/2}5^{8/5}41^{4/5}\approx 443.7513830832364$ | ||
| Ramified primes: |
\(3\), \(5\), \(41\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{41}a^{7}+\frac{18}{41}a^{6}-\frac{10}{41}a^{5}+\frac{9}{41}a^{4}-\frac{19}{41}a^{3}-\frac{1}{41}a^{2}+\frac{11}{41}a-\frac{14}{41}$, $\frac{1}{41}a^{8}-\frac{6}{41}a^{6}-\frac{16}{41}a^{5}-\frac{17}{41}a^{4}+\frac{13}{41}a^{3}-\frac{12}{41}a^{2}-\frac{7}{41}a+\frac{6}{41}$, $\frac{1}{41}a^{9}+\frac{10}{41}a^{6}+\frac{5}{41}a^{5}-\frac{15}{41}a^{4}-\frac{3}{41}a^{3}-\frac{13}{41}a^{2}-\frac{10}{41}a-\frac{2}{41}$, $\frac{1}{123}a^{10}+\frac{1}{123}a^{9}+\frac{1}{123}a^{8}-\frac{1}{123}a^{7}+\frac{19}{41}a^{6}+\frac{2}{123}a^{5}+\frac{10}{41}a^{4}-\frac{40}{123}a^{3}+\frac{17}{123}a^{2}-\frac{17}{123}a+\frac{35}{123}$, $\frac{1}{29\cdots 88}a^{11}+\frac{93\cdots 96}{73\cdots 97}a^{10}-\frac{15\cdots 55}{14\cdots 94}a^{9}+\frac{47\cdots 05}{98\cdots 96}a^{8}-\frac{67\cdots 09}{73\cdots 97}a^{7}-\frac{53\cdots 87}{29\cdots 88}a^{6}+\frac{89\cdots 67}{29\cdots 88}a^{5}-\frac{17\cdots 71}{29\cdots 88}a^{4}+\frac{85\cdots 45}{29\cdots 88}a^{3}-\frac{39\cdots 13}{98\cdots 96}a^{2}+\frac{74\cdots 61}{24\cdots 99}a-\frac{30\cdots 25}{29\cdots 88}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $3$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{19\cdots 51}{29\cdots 88}a^{11}-\frac{11\cdots 96}{73\cdots 97}a^{10}+\frac{25\cdots 05}{14\cdots 94}a^{9}+\frac{56\cdots 29}{29\cdots 88}a^{8}-\frac{12\cdots 35}{24\cdots 99}a^{7}+\frac{96\cdots 31}{29\cdots 88}a^{6}-\frac{14\cdots 17}{98\cdots 96}a^{5}+\frac{79\cdots 15}{29\cdots 88}a^{4}-\frac{72\cdots 97}{29\cdots 88}a^{3}-\frac{61\cdots 89}{29\cdots 88}a^{2}-\frac{11\cdots 71}{73\cdots 97}a-\frac{33\cdots 89}{98\cdots 96}$, $\frac{43\cdots 31}{49\cdots 98}a^{11}-\frac{76\cdots 36}{24\cdots 99}a^{10}+\frac{61\cdots 11}{24\cdots 99}a^{9}+\frac{16\cdots 73}{49\cdots 98}a^{8}-\frac{18\cdots 11}{24\cdots 99}a^{7}+\frac{24\cdots 21}{49\cdots 98}a^{6}-\frac{11\cdots 31}{49\cdots 98}a^{5}+\frac{26\cdots 99}{49\cdots 98}a^{4}-\frac{14\cdots 87}{49\cdots 98}a^{3}-\frac{14\cdots 41}{49\cdots 98}a^{2}+\frac{24\cdots 31}{24\cdots 99}a-\frac{43\cdots 05}{11\cdots 78}$, $\frac{26\cdots 43}{98\cdots 96}a^{11}-\frac{70\cdots 57}{73\cdots 97}a^{10}-\frac{28\cdots 75}{14\cdots 94}a^{9}-\frac{73\cdots 21}{29\cdots 88}a^{8}-\frac{35\cdots 26}{73\cdots 97}a^{7}+\frac{24\cdots 51}{98\cdots 96}a^{6}-\frac{86\cdots 77}{29\cdots 88}a^{5}+\frac{68\cdots 83}{98\cdots 96}a^{4}+\frac{30\cdots 13}{29\cdots 88}a^{3}+\frac{59\cdots 33}{29\cdots 88}a^{2}+\frac{16\cdots 75}{73\cdots 97}a+\frac{50\cdots 03}{29\cdots 88}$, $\frac{24\cdots 93}{29\cdots 88}a^{11}+\frac{58\cdots 34}{24\cdots 99}a^{10}-\frac{11\cdots 19}{49\cdots 98}a^{9}-\frac{34\cdots 19}{29\cdots 88}a^{8}+\frac{48\cdots 37}{73\cdots 97}a^{7}-\frac{12\cdots 61}{29\cdots 88}a^{6}+\frac{57\cdots 85}{29\cdots 88}a^{5}-\frac{12\cdots 85}{29\cdots 88}a^{4}+\frac{24\cdots 45}{98\cdots 96}a^{3}+\frac{59\cdots 87}{29\cdots 88}a^{2}+\frac{14\cdots 56}{73\cdots 97}a+\frac{24\cdots 17}{71\cdots 68}$, $\frac{27\cdots 49}{98\cdots 96}a^{11}+\frac{24\cdots 91}{73\cdots 97}a^{10}+\frac{13\cdots 37}{14\cdots 94}a^{9}+\frac{10\cdots 17}{29\cdots 88}a^{8}-\frac{80\cdots 75}{73\cdots 97}a^{7}+\frac{77\cdots 85}{98\cdots 96}a^{6}-\frac{13\cdots 31}{29\cdots 88}a^{5}-\frac{29\cdots 71}{98\cdots 96}a^{4}-\frac{11\cdots 57}{71\cdots 68}a^{3}-\frac{27\cdots 89}{29\cdots 88}a^{2}+\frac{30\cdots 06}{73\cdots 97}a+\frac{54\cdots 37}{29\cdots 88}$, $\frac{24\cdots 21}{98\cdots 96}a^{11}-\frac{52\cdots 57}{73\cdots 97}a^{10}+\frac{99\cdots 83}{14\cdots 94}a^{9}+\frac{10\cdots 77}{29\cdots 88}a^{8}-\frac{14\cdots 08}{73\cdots 97}a^{7}+\frac{12\cdots 61}{98\cdots 96}a^{6}-\frac{17\cdots 15}{29\cdots 88}a^{5}+\frac{30\cdots 97}{23\cdots 56}a^{4}-\frac{21\cdots 37}{29\cdots 88}a^{3}-\frac{17\cdots 61}{29\cdots 88}a^{2}-\frac{44\cdots 43}{73\cdots 97}a-\frac{29\cdots 39}{29\cdots 88}$, $\frac{30\cdots 57}{98\cdots 96}a^{11}+\frac{14\cdots 07}{73\cdots 97}a^{10}-\frac{87\cdots 37}{14\cdots 94}a^{9}-\frac{79\cdots 25}{29\cdots 88}a^{8}+\frac{16\cdots 52}{73\cdots 97}a^{7}-\frac{86\cdots 45}{98\cdots 96}a^{6}+\frac{81\cdots 71}{29\cdots 88}a^{5}+\frac{35\cdots 43}{98\cdots 96}a^{4}-\frac{88\cdots 91}{29\cdots 88}a^{3}+\frac{21\cdots 81}{29\cdots 88}a^{2}+\frac{26\cdots 32}{73\cdots 97}a+\frac{82\cdots 27}{29\cdots 88}$
|
| |
| Regulator: | \( 273555130.41668713 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{4}\cdot 273555130.41668713 \cdot 1}{2\cdot\sqrt{98690634698303375244140625}}\cr\approx \mathstrut & 0.343333636622524 \end{aligned}\] (assuming GRH)
Galois group
$C_2\times A_5$ (as 12T76):
| A non-solvable group of order 120 |
| The 10 conjugacy class representatives for $C_2\times A_5$ |
| Character table for $C_2\times A_5$ |
Intermediate fields
| 6.2.9934316015625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
| Minimal sibling: | 10.0.296071904094910125732421875.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.10.0.1}{10} }{,}\,{\href{/padicField/2.2.0.1}{2} }$ | R | R | ${\href{/padicField/7.3.0.1}{3} }^{4}$ | ${\href{/padicField/11.10.0.1}{10} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.3.0.1}{3} }^{4}$ | ${\href{/padicField/17.10.0.1}{10} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.5.0.1}{5} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.10.0.1}{10} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.10.0.1}{10} }{,}\,{\href{/padicField/29.2.0.1}{2} }$ | ${\href{/padicField/31.2.0.1}{2} }^{6}$ | ${\href{/padicField/37.2.0.1}{2} }^{6}$ | R | ${\href{/padicField/43.5.0.1}{5} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}$ | ${\href{/padicField/53.10.0.1}{10} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.10.0.1}{10} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 3.2.1.0a1.1 | $x^{2} + 2 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(5\)
| 5.2.1.0a1.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 5.2.5.16a4.5 | $x^{10} + 20 x^{9} + 190 x^{8} + 1120 x^{7} + 4360 x^{6} + 11104 x^{5} + 17840 x^{4} + 17280 x^{3} + 9680 x^{2} + 2880 x + 457$ | $5$ | $2$ | $16$ | $C_{10}$ | $$[2]^{2}$$ | |
|
\(41\)
| 41.2.1.0a1.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 41.2.5.8a1.1 | $x^{10} + 190 x^{9} + 14470 x^{8} + 553280 x^{7} + 10685960 x^{6} + 85860848 x^{5} + 64115760 x^{4} + 19918080 x^{3} + 3125520 x^{2} + 246281 x + 7776$ | $5$ | $2$ | $8$ | $C_{10}$ | $$[\ ]_{5}^{2}$$ |