Properties

Label 990.2.ba.h.289.1
Level $990$
Weight $2$
Character 990.289
Analytic conductor $7.905$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(289,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.ba (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,4,6,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 8 x^{14} + 10 x^{13} - 109 x^{12} + 280 x^{11} - 198 x^{10} - 1168 x^{9} + \cdots + 390625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 289.1
Root \(1.89162 - 1.19237i\) of defining polynomial
Character \(\chi\) \(=\) 990.289
Dual form 990.2.ba.h.829.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.587785 - 0.809017i) q^{2} +(-0.309017 + 0.951057i) q^{4} +(-1.71856 + 1.43058i) q^{5} +(-4.76878 - 1.54947i) q^{7} +(0.951057 - 0.309017i) q^{8} +(2.16751 + 0.549472i) q^{10} +(0.969425 - 3.17178i) q^{11} +(1.37249 + 1.88906i) q^{13} +(1.54947 + 4.76878i) q^{14} +(-0.809017 - 0.587785i) q^{16} +(-0.0359433 + 0.0494717i) q^{17} +(0.636930 + 1.96027i) q^{19} +(-0.829496 - 2.07652i) q^{20} +(-3.13584 + 1.08005i) q^{22} +3.91525i q^{23} +(0.906896 - 4.91707i) q^{25} +(0.721558 - 2.22073i) q^{26} +(2.94727 - 4.05657i) q^{28} +(-1.27844 + 3.93464i) q^{29} +(7.18170 - 5.21781i) q^{31} +1.00000i q^{32} +0.0611504 q^{34} +(10.4121 - 4.15925i) q^{35} +(4.33385 + 1.40815i) q^{37} +(1.21151 - 1.66751i) q^{38} +(-1.19237 + 1.89162i) q^{40} +(1.41525 + 4.35570i) q^{41} -3.61803i q^{43} +(2.71698 + 1.90211i) q^{44} +(3.16751 - 2.30133i) q^{46} +(8.44260 - 2.74317i) q^{47} +(14.6773 + 10.6637i) q^{49} +(-4.51105 + 2.15649i) q^{50} +(-2.22073 + 0.721558i) q^{52} +(-1.30598 - 1.79753i) q^{53} +(2.87147 + 6.83774i) q^{55} -5.01420 q^{56} +(3.93464 - 1.27844i) q^{58} +(0.599137 - 1.84396i) q^{59} +(7.84211 + 5.69763i) q^{61} +(-8.44260 - 2.74317i) q^{62} +(0.809017 - 0.587785i) q^{64} +(-5.06115 - 1.28302i) q^{65} +2.49573i q^{67} +(-0.0359433 - 0.0494717i) q^{68} +(-9.48497 - 5.97880i) q^{70} +(7.13254 + 5.18210i) q^{71} +(-5.13205 - 1.66751i) q^{73} +(-1.40815 - 4.33385i) q^{74} -2.06115 q^{76} +(-9.53757 + 13.6235i) q^{77} +(-5.38417 + 3.91183i) q^{79} +(2.23122 - 0.147217i) q^{80} +(2.69197 - 3.70518i) q^{82} +(6.49620 - 8.94125i) q^{83} +(-0.00900240 - 0.136440i) q^{85} +(-2.92705 + 2.12663i) q^{86} +(-0.0581575 - 3.31611i) q^{88} +6.09017 q^{89} +(-3.61803 - 11.1352i) q^{91} +(-3.72363 - 1.20988i) q^{92} +(-7.18170 - 5.21781i) q^{94} +(-3.89892 - 2.45766i) q^{95} +(4.29216 + 5.90765i) q^{97} -18.1422i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{4} + 6 q^{5} + 4 q^{10} + 20 q^{11} + 12 q^{14} - 4 q^{16} - 16 q^{19} - 6 q^{20} + 16 q^{26} - 16 q^{29} - 4 q^{31} - 8 q^{34} + 48 q^{35} - 4 q^{40} - 40 q^{41} + 20 q^{46} + 84 q^{49} - 4 q^{50}+ \cdots + 50 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(-1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.587785 0.809017i −0.415627 0.572061i
\(3\) 0 0
\(4\) −0.309017 + 0.951057i −0.154508 + 0.475528i
\(5\) −1.71856 + 1.43058i −0.768563 + 0.639774i
\(6\) 0 0
\(7\) −4.76878 1.54947i −1.80243 0.585645i −0.802491 0.596664i \(-0.796493\pi\)
−0.999939 + 0.0110184i \(0.996493\pi\)
\(8\) 0.951057 0.309017i 0.336249 0.109254i
\(9\) 0 0
\(10\) 2.16751 + 0.549472i 0.685425 + 0.173758i
\(11\) 0.969425 3.17178i 0.292293 0.956329i
\(12\) 0 0
\(13\) 1.37249 + 1.88906i 0.380659 + 0.523932i 0.955759 0.294151i \(-0.0950369\pi\)
−0.575100 + 0.818083i \(0.695037\pi\)
\(14\) 1.54947 + 4.76878i 0.414114 + 1.27451i
\(15\) 0 0
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) −0.0359433 + 0.0494717i −0.00871753 + 0.0119986i −0.813354 0.581770i \(-0.802360\pi\)
0.804636 + 0.593768i \(0.202360\pi\)
\(18\) 0 0
\(19\) 0.636930 + 1.96027i 0.146122 + 0.449717i 0.997154 0.0753974i \(-0.0240226\pi\)
−0.851032 + 0.525114i \(0.824023\pi\)
\(20\) −0.829496 2.07652i −0.185481 0.464324i
\(21\) 0 0
\(22\) −3.13584 + 1.08005i −0.668564 + 0.230267i
\(23\) 3.91525i 0.816387i 0.912896 + 0.408193i \(0.133841\pi\)
−0.912896 + 0.408193i \(0.866159\pi\)
\(24\) 0 0
\(25\) 0.906896 4.91707i 0.181379 0.983413i
\(26\) 0.721558 2.22073i 0.141509 0.435521i
\(27\) 0 0
\(28\) 2.94727 4.05657i 0.556982 0.766620i
\(29\) −1.27844 + 3.93464i −0.237401 + 0.730644i 0.759393 + 0.650632i \(0.225496\pi\)
−0.996794 + 0.0800122i \(0.974504\pi\)
\(30\) 0 0
\(31\) 7.18170 5.21781i 1.28987 0.937147i 0.290069 0.957006i \(-0.406322\pi\)
0.999803 + 0.0198592i \(0.00632179\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 0.0611504 0.0104872
\(35\) 10.4121 4.15925i 1.75996 0.703042i
\(36\) 0 0
\(37\) 4.33385 + 1.40815i 0.712481 + 0.231499i 0.642760 0.766067i \(-0.277789\pi\)
0.0697209 + 0.997567i \(0.477789\pi\)
\(38\) 1.21151 1.66751i 0.196533 0.270505i
\(39\) 0 0
\(40\) −1.19237 + 1.89162i −0.188531 + 0.299092i
\(41\) 1.41525 + 4.35570i 0.221025 + 0.680246i 0.998671 + 0.0515429i \(0.0164139\pi\)
−0.777646 + 0.628703i \(0.783586\pi\)
\(42\) 0 0
\(43\) 3.61803i 0.551745i −0.961194 0.275873i \(-0.911033\pi\)
0.961194 0.275873i \(-0.0889668\pi\)
\(44\) 2.71698 + 1.90211i 0.409600 + 0.286754i
\(45\) 0 0
\(46\) 3.16751 2.30133i 0.467023 0.339312i
\(47\) 8.44260 2.74317i 1.23148 0.400132i 0.380229 0.924892i \(-0.375845\pi\)
0.851250 + 0.524760i \(0.175845\pi\)
\(48\) 0 0
\(49\) 14.6773 + 10.6637i 2.09676 + 1.52338i
\(50\) −4.51105 + 2.15649i −0.637959 + 0.304973i
\(51\) 0 0
\(52\) −2.22073 + 0.721558i −0.307960 + 0.100062i
\(53\) −1.30598 1.79753i −0.179391 0.246910i 0.709847 0.704356i \(-0.248764\pi\)
−0.889237 + 0.457446i \(0.848764\pi\)
\(54\) 0 0
\(55\) 2.87147 + 6.83774i 0.387189 + 0.922000i
\(56\) −5.01420 −0.670050
\(57\) 0 0
\(58\) 3.93464 1.27844i 0.516643 0.167868i
\(59\) 0.599137 1.84396i 0.0780011 0.240063i −0.904451 0.426577i \(-0.859719\pi\)
0.982452 + 0.186515i \(0.0597192\pi\)
\(60\) 0 0
\(61\) 7.84211 + 5.69763i 1.00408 + 0.729506i 0.962959 0.269648i \(-0.0869073\pi\)
0.0411202 + 0.999154i \(0.486907\pi\)
\(62\) −8.44260 2.74317i −1.07221 0.348382i
\(63\) 0 0
\(64\) 0.809017 0.587785i 0.101127 0.0734732i
\(65\) −5.06115 1.28302i −0.627758 0.159139i
\(66\) 0 0
\(67\) 2.49573i 0.304902i 0.988311 + 0.152451i \(0.0487167\pi\)
−0.988311 + 0.152451i \(0.951283\pi\)
\(68\) −0.0359433 0.0494717i −0.00435876 0.00599932i
\(69\) 0 0
\(70\) −9.48497 5.97880i −1.13367 0.714603i
\(71\) 7.13254 + 5.18210i 0.846477 + 0.615002i 0.924172 0.381975i \(-0.124756\pi\)
−0.0776953 + 0.996977i \(0.524756\pi\)
\(72\) 0 0
\(73\) −5.13205 1.66751i −0.600662 0.195167i −0.00712611 0.999975i \(-0.502268\pi\)
−0.593535 + 0.804808i \(0.702268\pi\)
\(74\) −1.40815 4.33385i −0.163695 0.503800i
\(75\) 0 0
\(76\) −2.06115 −0.236430
\(77\) −9.53757 + 13.6235i −1.08691 + 1.55254i
\(78\) 0 0
\(79\) −5.38417 + 3.91183i −0.605766 + 0.440115i −0.847921 0.530123i \(-0.822146\pi\)
0.242155 + 0.970238i \(0.422146\pi\)
\(80\) 2.23122 0.147217i 0.249458 0.0164594i
\(81\) 0 0
\(82\) 2.69197 3.70518i 0.297278 0.409169i
\(83\) 6.49620 8.94125i 0.713050 0.981429i −0.286676 0.958028i \(-0.592550\pi\)
0.999726 0.0234017i \(-0.00744968\pi\)
\(84\) 0 0
\(85\) −0.00900240 0.136440i −0.000976448 0.0147990i
\(86\) −2.92705 + 2.12663i −0.315632 + 0.229320i
\(87\) 0 0
\(88\) −0.0581575 3.31611i −0.00619961 0.353499i
\(89\) 6.09017 0.645557 0.322778 0.946475i \(-0.395383\pi\)
0.322778 + 0.946475i \(0.395383\pi\)
\(90\) 0 0
\(91\) −3.61803 11.1352i −0.379273 1.16728i
\(92\) −3.72363 1.20988i −0.388215 0.126139i
\(93\) 0 0
\(94\) −7.18170 5.21781i −0.740736 0.538176i
\(95\) −3.89892 2.45766i −0.400021 0.252151i
\(96\) 0 0
\(97\) 4.29216 + 5.90765i 0.435802 + 0.599831i 0.969273 0.245988i \(-0.0791124\pi\)
−0.533470 + 0.845819i \(0.679112\pi\)
\(98\) 18.1422i 1.83263i
\(99\) 0 0
\(100\) 4.39616 + 2.38197i 0.439616 + 0.238197i
\(101\) −0.179498 + 0.130413i −0.0178608 + 0.0129766i −0.596680 0.802479i \(-0.703514\pi\)
0.578819 + 0.815456i \(0.303514\pi\)
\(102\) 0 0
\(103\) −0.538341 0.174918i −0.0530443 0.0172351i 0.282375 0.959304i \(-0.408878\pi\)
−0.335419 + 0.942069i \(0.608878\pi\)
\(104\) 1.88906 + 1.37249i 0.185238 + 0.134583i
\(105\) 0 0
\(106\) −0.686596 + 2.11313i −0.0666881 + 0.205245i
\(107\) −2.12087 + 0.689113i −0.205033 + 0.0666191i −0.409733 0.912206i \(-0.634378\pi\)
0.204700 + 0.978825i \(0.434378\pi\)
\(108\) 0 0
\(109\) −7.86288 −0.753127 −0.376563 0.926391i \(-0.622894\pi\)
−0.376563 + 0.926391i \(0.622894\pi\)
\(110\) 3.84404 6.34219i 0.366515 0.604704i
\(111\) 0 0
\(112\) 2.94727 + 4.05657i 0.278491 + 0.383310i
\(113\) 11.9469 3.88177i 1.12387 0.365166i 0.312624 0.949877i \(-0.398792\pi\)
0.811242 + 0.584710i \(0.198792\pi\)
\(114\) 0 0
\(115\) −5.60107 6.72860i −0.522303 0.627445i
\(116\) −3.34700 2.43174i −0.310762 0.225781i
\(117\) 0 0
\(118\) −1.84396 + 0.599137i −0.169750 + 0.0551551i
\(119\) 0.248061 0.180227i 0.0227397 0.0165214i
\(120\) 0 0
\(121\) −9.12043 6.14961i −0.829130 0.559056i
\(122\) 9.69338i 0.877597i
\(123\) 0 0
\(124\) 2.74317 + 8.44260i 0.246344 + 0.758168i
\(125\) 5.47569 + 9.74766i 0.489761 + 0.871857i
\(126\) 0 0
\(127\) 8.50112 11.7008i 0.754353 1.03828i −0.243310 0.969949i \(-0.578233\pi\)
0.997663 0.0683289i \(-0.0217667\pi\)
\(128\) −0.951057 0.309017i −0.0840623 0.0273135i
\(129\) 0 0
\(130\) 1.93688 + 4.84870i 0.169876 + 0.425259i
\(131\) −15.3256 −1.33900 −0.669502 0.742810i \(-0.733493\pi\)
−0.669502 + 0.742810i \(0.733493\pi\)
\(132\) 0 0
\(133\) 10.3350i 0.896159i
\(134\) 2.01909 1.46696i 0.174423 0.126726i
\(135\) 0 0
\(136\) −0.0188965 + 0.0581575i −0.00162036 + 0.00498696i
\(137\) 0.649130 0.893451i 0.0554589 0.0763326i −0.780387 0.625297i \(-0.784978\pi\)
0.835846 + 0.548964i \(0.184978\pi\)
\(138\) 0 0
\(139\) 3.06115 9.42125i 0.259643 0.799100i −0.733236 0.679974i \(-0.761991\pi\)
0.992879 0.119126i \(-0.0380092\pi\)
\(140\) 0.738177 + 11.1878i 0.0623874 + 0.945538i
\(141\) 0 0
\(142\) 8.81631i 0.739848i
\(143\) 7.32222 2.52192i 0.612315 0.210894i
\(144\) 0 0
\(145\) −3.43173 8.59082i −0.284990 0.713429i
\(146\) 1.66751 + 5.13205i 0.138004 + 0.424732i
\(147\) 0 0
\(148\) −2.67847 + 3.68660i −0.220169 + 0.303036i
\(149\) −7.11314 5.16800i −0.582731 0.423379i 0.256977 0.966418i \(-0.417274\pi\)
−0.839708 + 0.543039i \(0.817274\pi\)
\(150\) 0 0
\(151\) 6.67177 + 20.5336i 0.542941 + 1.67100i 0.725835 + 0.687868i \(0.241453\pi\)
−0.182894 + 0.983133i \(0.558547\pi\)
\(152\) 1.21151 + 1.66751i 0.0982667 + 0.135253i
\(153\) 0 0
\(154\) 16.6276 0.291613i 1.33989 0.0234988i
\(155\) −4.87770 + 19.2411i −0.391786 + 1.54548i
\(156\) 0 0
\(157\) −3.24760 + 1.05521i −0.259186 + 0.0842148i −0.435728 0.900078i \(-0.643509\pi\)
0.176542 + 0.984293i \(0.443509\pi\)
\(158\) 6.32947 + 2.05657i 0.503546 + 0.163612i
\(159\) 0 0
\(160\) −1.43058 1.71856i −0.113097 0.135864i
\(161\) 6.06657 18.6710i 0.478113 1.47148i
\(162\) 0 0
\(163\) 10.2336 + 14.0853i 0.801554 + 1.10324i 0.992572 + 0.121657i \(0.0388209\pi\)
−0.191019 + 0.981586i \(0.561179\pi\)
\(164\) −4.57985 −0.357626
\(165\) 0 0
\(166\) −11.0520 −0.857801
\(167\) 1.94321 + 2.67460i 0.150370 + 0.206967i 0.877556 0.479473i \(-0.159172\pi\)
−0.727186 + 0.686440i \(0.759172\pi\)
\(168\) 0 0
\(169\) 2.33237 7.17831i 0.179413 0.552178i
\(170\) −0.105091 + 0.0874803i −0.00806008 + 0.00670944i
\(171\) 0 0
\(172\) 3.44095 + 1.11803i 0.262370 + 0.0852493i
\(173\) −4.87758 + 1.58482i −0.370836 + 0.120492i −0.488505 0.872561i \(-0.662458\pi\)
0.117670 + 0.993053i \(0.462458\pi\)
\(174\) 0 0
\(175\) −11.9436 + 22.0432i −0.902855 + 1.66631i
\(176\) −2.64861 + 1.99621i −0.199646 + 0.150470i
\(177\) 0 0
\(178\) −3.57971 4.92705i −0.268311 0.369298i
\(179\) −4.46201 13.7327i −0.333507 1.02643i −0.967453 0.253051i \(-0.918566\pi\)
0.633947 0.773377i \(-0.281434\pi\)
\(180\) 0 0
\(181\) −9.63223 6.99822i −0.715958 0.520174i 0.169132 0.985593i \(-0.445903\pi\)
−0.885090 + 0.465419i \(0.845903\pi\)
\(182\) −6.88191 + 9.47214i −0.510121 + 0.702121i
\(183\) 0 0
\(184\) 1.20988 + 3.72363i 0.0891935 + 0.274509i
\(185\) −9.46246 + 3.77992i −0.695694 + 0.277905i
\(186\) 0 0
\(187\) 0.122069 + 0.161963i 0.00892658 + 0.0118439i
\(188\) 8.87707i 0.647427i
\(189\) 0 0
\(190\) 0.303437 + 4.59887i 0.0220137 + 0.333637i
\(191\) −3.25026 + 10.0033i −0.235181 + 0.723812i 0.761917 + 0.647675i \(0.224259\pi\)
−0.997097 + 0.0761369i \(0.975741\pi\)
\(192\) 0 0
\(193\) −2.86174 + 3.93885i −0.205993 + 0.283525i −0.899496 0.436929i \(-0.856066\pi\)
0.693503 + 0.720453i \(0.256066\pi\)
\(194\) 2.25652 6.94485i 0.162009 0.498612i
\(195\) 0 0
\(196\) −14.6773 + 10.6637i −1.04838 + 0.761692i
\(197\) 15.9760i 1.13824i 0.822253 + 0.569122i \(0.192717\pi\)
−0.822253 + 0.569122i \(0.807283\pi\)
\(198\) 0 0
\(199\) −16.7076 −1.18437 −0.592184 0.805803i \(-0.701734\pi\)
−0.592184 + 0.805803i \(0.701734\pi\)
\(200\) −0.656948 4.95665i −0.0464532 0.350488i
\(201\) 0 0
\(202\) 0.211013 + 0.0685623i 0.0148468 + 0.00482403i
\(203\) 12.1932 16.7825i 0.855797 1.17790i
\(204\) 0 0
\(205\) −8.66336 5.46090i −0.605075 0.381406i
\(206\) 0.174918 + 0.538341i 0.0121871 + 0.0375080i
\(207\) 0 0
\(208\) 2.33501i 0.161904i
\(209\) 6.83501 0.119871i 0.472788 0.00829167i
\(210\) 0 0
\(211\) 12.7388 9.25526i 0.876974 0.637159i −0.0554754 0.998460i \(-0.517667\pi\)
0.932449 + 0.361301i \(0.117667\pi\)
\(212\) 2.11313 0.686596i 0.145130 0.0471556i
\(213\) 0 0
\(214\) 1.80412 + 1.31077i 0.123327 + 0.0896025i
\(215\) 5.17588 + 6.21781i 0.352992 + 0.424051i
\(216\) 0 0
\(217\) −42.3328 + 13.7548i −2.87374 + 0.933735i
\(218\) 4.62168 + 6.36120i 0.313020 + 0.430835i
\(219\) 0 0
\(220\) −7.39041 + 0.617952i −0.498261 + 0.0416623i
\(221\) −0.142787 −0.00960488
\(222\) 0 0
\(223\) 13.8432 4.49794i 0.927011 0.301204i 0.193671 0.981067i \(-0.437961\pi\)
0.733340 + 0.679862i \(0.237961\pi\)
\(224\) 1.54947 4.76878i 0.103528 0.318628i
\(225\) 0 0
\(226\) −10.1626 7.38357i −0.676007 0.491148i
\(227\) 9.35512 + 3.03966i 0.620921 + 0.201749i 0.602549 0.798082i \(-0.294152\pi\)
0.0183719 + 0.999831i \(0.494152\pi\)
\(228\) 0 0
\(229\) −12.5785 + 9.13881i −0.831210 + 0.603909i −0.919901 0.392150i \(-0.871732\pi\)
0.0886913 + 0.996059i \(0.471732\pi\)
\(230\) −2.15132 + 8.48633i −0.141854 + 0.559572i
\(231\) 0 0
\(232\) 4.13712i 0.271616i
\(233\) −15.2217 20.9509i −0.997206 1.37254i −0.927024 0.375002i \(-0.877642\pi\)
−0.0701824 0.997534i \(-0.522358\pi\)
\(234\) 0 0
\(235\) −10.5848 + 16.7921i −0.690476 + 1.09539i
\(236\) 1.56856 + 1.13963i 0.102105 + 0.0741834i
\(237\) 0 0
\(238\) −0.291613 0.0947508i −0.0189025 0.00614178i
\(239\) 6.17911 + 19.0173i 0.399693 + 1.23013i 0.925246 + 0.379369i \(0.123859\pi\)
−0.525552 + 0.850761i \(0.676141\pi\)
\(240\) 0 0
\(241\) 9.01381 0.580630 0.290315 0.956931i \(-0.406240\pi\)
0.290315 + 0.956931i \(0.406240\pi\)
\(242\) 0.385714 + 10.9932i 0.0247946 + 0.706672i
\(243\) 0 0
\(244\) −7.84211 + 5.69763i −0.502040 + 0.364753i
\(245\) −40.4791 + 2.67084i −2.58611 + 0.170634i
\(246\) 0 0
\(247\) −2.82890 + 3.89364i −0.179998 + 0.247747i
\(248\) 5.21781 7.18170i 0.331331 0.456038i
\(249\) 0 0
\(250\) 4.66749 10.1595i 0.295198 0.642540i
\(251\) 1.06115 0.770971i 0.0669792 0.0486632i −0.553792 0.832655i \(-0.686820\pi\)
0.620771 + 0.783992i \(0.286820\pi\)
\(252\) 0 0
\(253\) 12.4183 + 3.79554i 0.780734 + 0.238624i
\(254\) −14.4630 −0.907488
\(255\) 0 0
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) −4.24551 1.37945i −0.264827 0.0860477i 0.173594 0.984817i \(-0.444462\pi\)
−0.438421 + 0.898770i \(0.644462\pi\)
\(258\) 0 0
\(259\) −18.4853 13.4304i −1.14862 0.834522i
\(260\) 2.78421 4.41696i 0.172669 0.273928i
\(261\) 0 0
\(262\) 9.00817 + 12.3987i 0.556526 + 0.765993i
\(263\) 14.1791i 0.874320i 0.899384 + 0.437160i \(0.144016\pi\)
−0.899384 + 0.437160i \(0.855984\pi\)
\(264\) 0 0
\(265\) 4.81592 + 1.22086i 0.295840 + 0.0749966i
\(266\) −8.36120 + 6.07477i −0.512658 + 0.372468i
\(267\) 0 0
\(268\) −2.37358 0.771224i −0.144990 0.0471100i
\(269\) 25.8847 + 18.8063i 1.57822 + 1.14664i 0.918702 + 0.394952i \(0.129239\pi\)
0.659516 + 0.751691i \(0.270761\pi\)
\(270\) 0 0
\(271\) 0.327988 1.00944i 0.0199238 0.0613192i −0.940600 0.339516i \(-0.889737\pi\)
0.960524 + 0.278197i \(0.0897367\pi\)
\(272\) 0.0581575 0.0188965i 0.00352631 0.00114577i
\(273\) 0 0
\(274\) −1.10437 −0.0667172
\(275\) −14.7167 7.64320i −0.887451 0.460902i
\(276\) 0 0
\(277\) 3.89892 + 5.36641i 0.234264 + 0.322436i 0.909923 0.414778i \(-0.136141\pi\)
−0.675659 + 0.737214i \(0.736141\pi\)
\(278\) −9.42125 + 3.06115i −0.565049 + 0.183596i
\(279\) 0 0
\(280\) 8.61720 7.17320i 0.514976 0.428680i
\(281\) 12.6582 + 9.19674i 0.755126 + 0.548631i 0.897412 0.441194i \(-0.145445\pi\)
−0.142285 + 0.989826i \(0.545445\pi\)
\(282\) 0 0
\(283\) 21.3993 6.95305i 1.27205 0.413316i 0.406280 0.913749i \(-0.366826\pi\)
0.865775 + 0.500433i \(0.166826\pi\)
\(284\) −7.13254 + 5.18210i −0.423239 + 0.307501i
\(285\) 0 0
\(286\) −6.34417 4.44146i −0.375139 0.262629i
\(287\) 22.9643i 1.35554i
\(288\) 0 0
\(289\) 5.25213 + 16.1644i 0.308949 + 0.950847i
\(290\) −4.93300 + 7.82589i −0.289676 + 0.459552i
\(291\) 0 0
\(292\) 3.17178 4.36559i 0.185615 0.255477i
\(293\) 17.2985 + 5.62063i 1.01059 + 0.328360i 0.767089 0.641540i \(-0.221704\pi\)
0.243500 + 0.969901i \(0.421704\pi\)
\(294\) 0 0
\(295\) 1.60827 + 4.02606i 0.0936370 + 0.234406i
\(296\) 4.55688 0.264863
\(297\) 0 0
\(298\) 8.79232i 0.509326i
\(299\) −7.39616 + 5.37363i −0.427731 + 0.310765i
\(300\) 0 0
\(301\) −5.60604 + 17.2536i −0.323127 + 0.994482i
\(302\) 12.6905 17.4669i 0.730254 1.00511i
\(303\) 0 0
\(304\) 0.636930 1.96027i 0.0365305 0.112429i
\(305\) −21.6280 + 1.42703i −1.23842 + 0.0817118i
\(306\) 0 0
\(307\) 12.3820i 0.706676i −0.935496 0.353338i \(-0.885047\pi\)
0.935496 0.353338i \(-0.114953\pi\)
\(308\) −10.0094 13.2806i −0.570339 0.756735i
\(309\) 0 0
\(310\) 18.4334 7.36349i 1.04695 0.418218i
\(311\) −2.90784 8.94941i −0.164889 0.507475i 0.834140 0.551553i \(-0.185965\pi\)
−0.999028 + 0.0440788i \(0.985965\pi\)
\(312\) 0 0
\(313\) 8.95297 12.3227i 0.506052 0.696520i −0.477196 0.878797i \(-0.658347\pi\)
0.983247 + 0.182277i \(0.0583467\pi\)
\(314\) 2.76257 + 2.00712i 0.155901 + 0.113269i
\(315\) 0 0
\(316\) −2.05657 6.32947i −0.115691 0.356061i
\(317\) 7.90964 + 10.8867i 0.444250 + 0.611457i 0.971150 0.238470i \(-0.0766459\pi\)
−0.526900 + 0.849927i \(0.676646\pi\)
\(318\) 0 0
\(319\) 11.2405 + 7.86928i 0.629346 + 0.440595i
\(320\) −0.549472 + 2.16751i −0.0307164 + 0.121167i
\(321\) 0 0
\(322\) −18.6710 + 6.06657i −1.04049 + 0.338077i
\(323\) −0.119871 0.0389485i −0.00666982 0.00216715i
\(324\) 0 0
\(325\) 10.5334 5.03542i 0.584285 0.279315i
\(326\) 5.38010 16.5582i 0.297976 0.917076i
\(327\) 0 0
\(328\) 2.69197 + 3.70518i 0.148639 + 0.204584i
\(329\) −44.5114 −2.45399
\(330\) 0 0
\(331\) −3.82236 −0.210096 −0.105048 0.994467i \(-0.533500\pi\)
−0.105048 + 0.994467i \(0.533500\pi\)
\(332\) 6.49620 + 8.94125i 0.356525 + 0.490715i
\(333\) 0 0
\(334\) 1.02161 3.14419i 0.0558999 0.172042i
\(335\) −3.57034 4.28907i −0.195069 0.234337i
\(336\) 0 0
\(337\) 9.00338 + 2.92538i 0.490445 + 0.159355i 0.543791 0.839221i \(-0.316988\pi\)
−0.0533455 + 0.998576i \(0.516988\pi\)
\(338\) −7.17831 + 2.33237i −0.390449 + 0.126864i
\(339\) 0 0
\(340\) 0.132544 + 0.0336004i 0.00718820 + 0.00182224i
\(341\) −9.58765 27.8371i −0.519201 1.50746i
\(342\) 0 0
\(343\) −32.8390 45.1989i −1.77314 2.44051i
\(344\) −1.11803 3.44095i −0.0602804 0.185524i
\(345\) 0 0
\(346\) 4.14912 + 3.01451i 0.223058 + 0.162061i
\(347\) −9.72341 + 13.3831i −0.521980 + 0.718444i −0.985882 0.167443i \(-0.946449\pi\)
0.463902 + 0.885887i \(0.346449\pi\)
\(348\) 0 0
\(349\) −9.03161 27.7964i −0.483451 1.48791i −0.834212 0.551444i \(-0.814077\pi\)
0.350761 0.936465i \(-0.385923\pi\)
\(350\) 24.8536 3.29407i 1.32848 0.176075i
\(351\) 0 0
\(352\) 3.17178 + 0.969425i 0.169057 + 0.0516705i
\(353\) 27.9200i 1.48603i −0.669272 0.743017i \(-0.733394\pi\)
0.669272 0.743017i \(-0.266606\pi\)
\(354\) 0 0
\(355\) −19.6711 + 1.29791i −1.04403 + 0.0688862i
\(356\) −1.88197 + 5.79210i −0.0997440 + 0.306980i
\(357\) 0 0
\(358\) −8.48725 + 11.6817i −0.448565 + 0.617397i
\(359\) 5.25768 16.1815i 0.277490 0.854025i −0.711060 0.703131i \(-0.751785\pi\)
0.988550 0.150894i \(-0.0482152\pi\)
\(360\) 0 0
\(361\) 11.9343 8.67081i 0.628123 0.456358i
\(362\) 11.9061i 0.625770i
\(363\) 0 0
\(364\) 11.7082 0.613677
\(365\) 11.2052 4.47609i 0.586509 0.234289i
\(366\) 0 0
\(367\) 27.9983 + 9.09719i 1.46150 + 0.474870i 0.928527 0.371264i \(-0.121075\pi\)
0.532971 + 0.846133i \(0.321075\pi\)
\(368\) 2.30133 3.16751i 0.119965 0.165118i
\(369\) 0 0
\(370\) 8.61991 + 5.43351i 0.448128 + 0.282475i
\(371\) 3.44273 + 10.5956i 0.178738 + 0.550098i
\(372\) 0 0
\(373\) 16.0743i 0.832297i 0.909297 + 0.416149i \(0.136620\pi\)
−0.909297 + 0.416149i \(0.863380\pi\)
\(374\) 0.0592807 0.193956i 0.00306533 0.0100292i
\(375\) 0 0
\(376\) 7.18170 5.21781i 0.370368 0.269088i
\(377\) −9.18743 + 2.98518i −0.473177 + 0.153744i
\(378\) 0 0
\(379\) 14.6618 + 10.6524i 0.753125 + 0.547178i 0.896794 0.442448i \(-0.145890\pi\)
−0.143669 + 0.989626i \(0.545890\pi\)
\(380\) 3.54221 2.94864i 0.181712 0.151262i
\(381\) 0 0
\(382\) 10.0033 3.25026i 0.511812 0.166298i
\(383\) −7.76587 10.6888i −0.396817 0.546172i 0.563124 0.826372i \(-0.309599\pi\)
−0.959942 + 0.280200i \(0.909599\pi\)
\(384\) 0 0
\(385\) −3.09853 37.0570i −0.157916 1.88860i
\(386\) 4.86869 0.247810
\(387\) 0 0
\(388\) −6.94485 + 2.25652i −0.352572 + 0.114557i
\(389\) −8.19653 + 25.2263i −0.415580 + 1.27902i 0.496150 + 0.868237i \(0.334746\pi\)
−0.911731 + 0.410788i \(0.865254\pi\)
\(390\) 0 0
\(391\) −0.193694 0.140727i −0.00979553 0.00711687i
\(392\) 17.2542 + 5.60624i 0.871470 + 0.283158i
\(393\) 0 0
\(394\) 12.9249 9.39047i 0.651145 0.473085i
\(395\) 3.65684 14.4252i 0.183996 0.725810i
\(396\) 0 0
\(397\) 30.3246i 1.52195i 0.648783 + 0.760974i \(0.275278\pi\)
−0.648783 + 0.760974i \(0.724722\pi\)
\(398\) 9.82047 + 13.5167i 0.492256 + 0.677532i
\(399\) 0 0
\(400\) −3.62387 + 3.44493i −0.181194 + 0.172247i
\(401\) 15.7565 + 11.4478i 0.786844 + 0.571676i 0.907025 0.421076i \(-0.138348\pi\)
−0.120181 + 0.992752i \(0.538348\pi\)
\(402\) 0 0
\(403\) 19.7136 + 6.40532i 0.982002 + 0.319072i
\(404\) −0.0685623 0.211013i −0.00341110 0.0104983i
\(405\) 0 0
\(406\) −20.7444 −1.02952
\(407\) 8.66771 12.3809i 0.429642 0.613701i
\(408\) 0 0
\(409\) −22.9197 + 16.6521i −1.13330 + 0.823394i −0.986172 0.165723i \(-0.947004\pi\)
−0.147132 + 0.989117i \(0.547004\pi\)
\(410\) 0.674234 + 10.2186i 0.0332981 + 0.504663i
\(411\) 0 0
\(412\) 0.332713 0.457940i 0.0163916 0.0225611i
\(413\) −5.71431 + 7.86508i −0.281183 + 0.387015i
\(414\) 0 0
\(415\) 1.62705 + 24.6594i 0.0798685 + 1.21048i
\(416\) −1.88906 + 1.37249i −0.0926190 + 0.0672916i
\(417\) 0 0
\(418\) −4.11450 5.45918i −0.201247 0.267017i
\(419\) −15.4826 −0.756374 −0.378187 0.925729i \(-0.623452\pi\)
−0.378187 + 0.925729i \(0.623452\pi\)
\(420\) 0 0
\(421\) 6.63964 + 20.4347i 0.323596 + 0.995927i 0.972070 + 0.234690i \(0.0754076\pi\)
−0.648474 + 0.761237i \(0.724592\pi\)
\(422\) −14.9753 4.86578i −0.728988 0.236862i
\(423\) 0 0
\(424\) −1.79753 1.30598i −0.0872959 0.0634242i
\(425\) 0.210659 + 0.221601i 0.0102185 + 0.0107492i
\(426\) 0 0
\(427\) −28.5690 39.3219i −1.38255 1.90292i
\(428\) 2.23002i 0.107792i
\(429\) 0 0
\(430\) 1.98801 7.84211i 0.0958702 0.378180i
\(431\) 21.3896 15.5404i 1.03030 0.748557i 0.0619316 0.998080i \(-0.480274\pi\)
0.968369 + 0.249523i \(0.0802739\pi\)
\(432\) 0 0
\(433\) −31.2725 10.1611i −1.50286 0.488309i −0.562010 0.827130i \(-0.689972\pi\)
−0.940851 + 0.338821i \(0.889972\pi\)
\(434\) 36.0105 + 26.1631i 1.72856 + 1.25587i
\(435\) 0 0
\(436\) 2.42976 7.47804i 0.116365 0.358133i
\(437\) −7.67495 + 2.49374i −0.367143 + 0.119292i
\(438\) 0 0
\(439\) 12.1796 0.581299 0.290649 0.956830i \(-0.406129\pi\)
0.290649 + 0.956830i \(0.406129\pi\)
\(440\) 4.84391 + 5.61574i 0.230924 + 0.267720i
\(441\) 0 0
\(442\) 0.0839280 + 0.115517i 0.00399205 + 0.00549458i
\(443\) 15.7961 5.13247i 0.750496 0.243851i 0.0913015 0.995823i \(-0.470897\pi\)
0.659195 + 0.751972i \(0.270897\pi\)
\(444\) 0 0
\(445\) −10.4663 + 8.71246i −0.496151 + 0.413010i
\(446\) −11.7757 8.55558i −0.557598 0.405119i
\(447\) 0 0
\(448\) −4.76878 + 1.54947i −0.225304 + 0.0732057i
\(449\) 4.33928 3.15267i 0.204783 0.148784i −0.480667 0.876903i \(-0.659605\pi\)
0.685450 + 0.728119i \(0.259605\pi\)
\(450\) 0 0
\(451\) 15.1873 0.266353i 0.715143 0.0125421i
\(452\) 12.5617i 0.590852i
\(453\) 0 0
\(454\) −3.03966 9.35512i −0.142658 0.439058i
\(455\) 22.1475 + 13.9606i 1.03829 + 0.654481i
\(456\) 0 0
\(457\) −2.12330 + 2.92247i −0.0993237 + 0.136707i −0.855786 0.517330i \(-0.826926\pi\)
0.756462 + 0.654037i \(0.226926\pi\)
\(458\) 14.7869 + 4.80456i 0.690947 + 0.224502i
\(459\) 0 0
\(460\) 8.13010 3.24769i 0.379068 0.151424i
\(461\) 40.6625 1.89384 0.946922 0.321464i \(-0.104175\pi\)
0.946922 + 0.321464i \(0.104175\pi\)
\(462\) 0 0
\(463\) 2.11880i 0.0984690i 0.998787 + 0.0492345i \(0.0156782\pi\)
−0.998787 + 0.0492345i \(0.984322\pi\)
\(464\) 3.34700 2.43174i 0.155381 0.112891i
\(465\) 0 0
\(466\) −8.00252 + 24.6292i −0.370709 + 1.14093i
\(467\) 8.08494 11.1280i 0.374126 0.514941i −0.579890 0.814695i \(-0.696905\pi\)
0.954017 + 0.299754i \(0.0969046\pi\)
\(468\) 0 0
\(469\) 3.86707 11.9016i 0.178565 0.549565i
\(470\) 19.8067 1.30686i 0.913613 0.0602810i
\(471\) 0 0
\(472\) 1.93885i 0.0892428i
\(473\) −11.4756 3.50741i −0.527650 0.161271i
\(474\) 0 0
\(475\) 10.2164 1.35407i 0.468761 0.0621289i
\(476\) 0.0947508 + 0.291613i 0.00434289 + 0.0133661i
\(477\) 0 0
\(478\) 11.7534 16.1771i 0.537586 0.739924i
\(479\) −25.4118 18.4628i −1.16110 0.843586i −0.171180 0.985240i \(-0.554758\pi\)
−0.989916 + 0.141654i \(0.954758\pi\)
\(480\) 0 0
\(481\) 3.28806 + 10.1196i 0.149922 + 0.461414i
\(482\) −5.29818 7.29232i −0.241326 0.332156i
\(483\) 0 0
\(484\) 8.66700 6.77371i 0.393954 0.307896i
\(485\) −15.8277 4.01238i −0.718698 0.182193i
\(486\) 0 0
\(487\) 7.14274 2.32082i 0.323668 0.105166i −0.142676 0.989769i \(-0.545571\pi\)
0.466344 + 0.884603i \(0.345571\pi\)
\(488\) 9.21895 + 2.99542i 0.417322 + 0.135596i
\(489\) 0 0
\(490\) 25.9538 + 31.1784i 1.17247 + 1.40850i
\(491\) −3.48008 + 10.7106i −0.157054 + 0.483361i −0.998363 0.0571923i \(-0.981785\pi\)
0.841310 + 0.540554i \(0.181785\pi\)
\(492\) 0 0
\(493\) −0.148702 0.204671i −0.00669719 0.00921790i
\(494\) 4.81281 0.216539
\(495\) 0 0
\(496\) −8.87707 −0.398592
\(497\) −25.9840 35.7640i −1.16554 1.60423i
\(498\) 0 0
\(499\) 8.33753 25.6603i 0.373239 1.14871i −0.571420 0.820658i \(-0.693607\pi\)
0.944659 0.328054i \(-0.106393\pi\)
\(500\) −10.9627 + 2.19550i −0.490265 + 0.0981857i
\(501\) 0 0
\(502\) −1.24746 0.405323i −0.0556767 0.0180905i
\(503\) 30.5818 9.93662i 1.36357 0.443052i 0.466339 0.884606i \(-0.345573\pi\)
0.897235 + 0.441554i \(0.145573\pi\)
\(504\) 0 0
\(505\) 0.121913 0.480909i 0.00542504 0.0214002i
\(506\) −4.22866 12.2776i −0.187987 0.545806i
\(507\) 0 0
\(508\) 8.50112 + 11.7008i 0.377176 + 0.519139i
\(509\) 3.64048 + 11.2043i 0.161362 + 0.496620i 0.998750 0.0499888i \(-0.0159186\pi\)
−0.837388 + 0.546609i \(0.815919\pi\)
\(510\) 0 0
\(511\) 21.8899 + 15.9039i 0.968352 + 0.703549i
\(512\) 0.587785 0.809017i 0.0259767 0.0357538i
\(513\) 0 0
\(514\) 1.37945 + 4.24551i 0.0608449 + 0.187261i
\(515\) 1.17540 0.469532i 0.0517945 0.0206901i
\(516\) 0 0
\(517\) −0.516268 29.4374i −0.0227054 1.29465i
\(518\) 22.8491i 1.00393i
\(519\) 0 0
\(520\) −5.20992 + 0.343754i −0.228470 + 0.0150746i
\(521\) −0.718847 + 2.21238i −0.0314933 + 0.0969263i −0.965568 0.260152i \(-0.916227\pi\)
0.934074 + 0.357079i \(0.116227\pi\)
\(522\) 0 0
\(523\) −0.901612 + 1.24096i −0.0394248 + 0.0542635i −0.828274 0.560323i \(-0.810677\pi\)
0.788850 + 0.614586i \(0.210677\pi\)
\(524\) 4.73587 14.5755i 0.206888 0.636735i
\(525\) 0 0
\(526\) 11.4711 8.33426i 0.500165 0.363391i
\(527\) 0.542836i 0.0236463i
\(528\) 0 0
\(529\) 7.67080 0.333513
\(530\) −1.84303 4.61376i −0.0800563 0.200409i
\(531\) 0 0
\(532\) 9.82918 + 3.19369i 0.426149 + 0.138464i
\(533\) −6.28578 + 8.65163i −0.272267 + 0.374744i
\(534\) 0 0
\(535\) 2.65902 4.21836i 0.114959 0.182375i
\(536\) 0.771224 + 2.37358i 0.0333118 + 0.102523i
\(537\) 0 0
\(538\) 31.9952i 1.37941i
\(539\) 48.0515 36.2156i 2.06972 1.55992i
\(540\) 0 0
\(541\) 12.4927 9.07650i 0.537104 0.390229i −0.285904 0.958258i \(-0.592294\pi\)
0.823008 + 0.568029i \(0.192294\pi\)
\(542\) −1.00944 + 0.327988i −0.0433593 + 0.0140883i
\(543\) 0 0
\(544\) −0.0494717 0.0359433i −0.00212108 0.00154106i
\(545\) 13.5128 11.2485i 0.578826 0.481831i
\(546\) 0 0
\(547\) 10.1261 3.29017i 0.432960 0.140677i −0.0844251 0.996430i \(-0.526905\pi\)
0.517385 + 0.855752i \(0.326905\pi\)
\(548\) 0.649130 + 0.893451i 0.0277295 + 0.0381663i
\(549\) 0 0
\(550\) 2.46678 + 16.3986i 0.105184 + 0.699240i
\(551\) −8.52724 −0.363272
\(552\) 0 0
\(553\) 31.7372 10.3120i 1.34960 0.438513i
\(554\) 2.04979 6.30859i 0.0870871 0.268026i
\(555\) 0 0
\(556\) 8.01420 + 5.82265i 0.339878 + 0.246936i
\(557\) −32.2595 10.4818i −1.36688 0.444126i −0.468545 0.883439i \(-0.655222\pi\)
−0.898334 + 0.439313i \(0.855222\pi\)
\(558\) 0 0
\(559\) 6.83470 4.96570i 0.289077 0.210027i
\(560\) −10.8683 2.75516i −0.459269 0.116427i
\(561\) 0 0
\(562\) 15.6464i 0.660005i
\(563\) −0.789857 1.08714i −0.0332885 0.0458177i 0.792048 0.610458i \(-0.209015\pi\)
−0.825337 + 0.564641i \(0.809015\pi\)
\(564\) 0 0
\(565\) −14.9782 + 23.7620i −0.630139 + 0.999674i
\(566\) −18.2033 13.2255i −0.765142 0.555908i
\(567\) 0 0
\(568\) 8.38481 + 2.72439i 0.351819 + 0.114313i
\(569\) −9.70595 29.8718i −0.406894 1.25229i −0.919303 0.393550i \(-0.871247\pi\)
0.512409 0.858742i \(-0.328753\pi\)
\(570\) 0 0
\(571\) 9.25361 0.387252 0.193626 0.981075i \(-0.437975\pi\)
0.193626 + 0.981075i \(0.437975\pi\)
\(572\) 0.135798 + 7.74317i 0.00567801 + 0.323758i
\(573\) 0 0
\(574\) −18.5785 + 13.4981i −0.775451 + 0.563398i
\(575\) 19.2516 + 3.55073i 0.802845 + 0.148075i
\(576\) 0 0
\(577\) 25.4998 35.0975i 1.06157 1.46113i 0.183244 0.983068i \(-0.441340\pi\)
0.878327 0.478060i \(-0.158660\pi\)
\(578\) 9.99015 13.7503i 0.415536 0.571936i
\(579\) 0 0
\(580\) 9.23082 0.609057i 0.383289 0.0252897i
\(581\) −44.8332 + 32.5732i −1.85999 + 1.35136i
\(582\) 0 0
\(583\) −6.96744 + 2.39973i −0.288562 + 0.0993865i
\(584\) −5.39616 −0.223295
\(585\) 0 0
\(586\) −5.62063 17.2985i −0.232186 0.714595i
\(587\) 3.05524 + 0.992708i 0.126103 + 0.0409734i 0.371389 0.928477i \(-0.378882\pi\)
−0.245285 + 0.969451i \(0.578882\pi\)
\(588\) 0 0
\(589\) 14.8026 + 10.7547i 0.609929 + 0.443139i
\(590\) 2.31184 3.66758i 0.0951768 0.150992i
\(591\) 0 0
\(592\) −2.67847 3.68660i −0.110084 0.151518i
\(593\) 0.0315027i 0.00129366i 1.00000 0.000646829i \(0.000205892\pi\)
−1.00000 0.000646829i \(0.999794\pi\)
\(594\) 0 0
\(595\) −0.168479 + 0.664600i −0.00690696 + 0.0272460i
\(596\) 7.11314 5.16800i 0.291366 0.211689i
\(597\) 0 0
\(598\) 8.69471 + 2.82508i 0.355553 + 0.115526i
\(599\) 8.50993 + 6.18283i 0.347706 + 0.252623i 0.747906 0.663804i \(-0.231059\pi\)
−0.400200 + 0.916428i \(0.631059\pi\)
\(600\) 0 0
\(601\) 7.45305 22.9381i 0.304016 0.935665i −0.676026 0.736877i \(-0.736300\pi\)
0.980043 0.198788i \(-0.0637005\pi\)
\(602\) 17.2536 5.60604i 0.703205 0.228485i
\(603\) 0 0
\(604\) −21.5903 −0.878497
\(605\) 24.4715 2.47901i 0.994908 0.100786i
\(606\) 0 0
\(607\) −1.46340 2.01420i −0.0593975 0.0817537i 0.778285 0.627911i \(-0.216090\pi\)
−0.837682 + 0.546158i \(0.816090\pi\)
\(608\) −1.96027 + 0.636930i −0.0794995 + 0.0258309i
\(609\) 0 0
\(610\) 13.8671 + 16.6587i 0.561464 + 0.674489i
\(611\) 16.7694 + 12.1836i 0.678415 + 0.492898i
\(612\) 0 0
\(613\) −35.7338 + 11.6106i −1.44328 + 0.468949i −0.922917 0.384999i \(-0.874202\pi\)
−0.520359 + 0.853948i \(0.674202\pi\)
\(614\) −10.0172 + 7.27794i −0.404262 + 0.293714i
\(615\) 0 0
\(616\) −4.86089 + 15.9039i −0.195851 + 0.640788i
\(617\) 45.5803i 1.83499i 0.397744 + 0.917496i \(0.369793\pi\)
−0.397744 + 0.917496i \(0.630207\pi\)
\(618\) 0 0
\(619\) −1.77382 5.45924i −0.0712957 0.219425i 0.909059 0.416667i \(-0.136802\pi\)
−0.980355 + 0.197241i \(0.936802\pi\)
\(620\) −16.7921 10.5848i −0.674386 0.425096i
\(621\) 0 0
\(622\) −5.53104 + 7.61283i −0.221775 + 0.305246i
\(623\) −29.0427 9.43655i −1.16357 0.378067i
\(624\) 0 0
\(625\) −23.3551 8.91853i −0.934203 0.356741i
\(626\) −15.2317 −0.608781
\(627\) 0 0
\(628\) 3.41472i 0.136262i
\(629\) −0.225437 + 0.163789i −0.00898875 + 0.00653071i
\(630\) 0 0
\(631\) 3.70103 11.3906i 0.147336 0.453453i −0.849968 0.526834i \(-0.823379\pi\)
0.997304 + 0.0733811i \(0.0233790\pi\)
\(632\) −3.91183 + 5.38417i −0.155604 + 0.214171i
\(633\) 0 0
\(634\) 4.15834 12.7981i 0.165149 0.508276i
\(635\) 2.12920 + 32.2700i 0.0844948 + 1.28060i
\(636\) 0 0
\(637\) 42.3621i 1.67845i
\(638\) −0.240605 13.7192i −0.00952563 0.543148i
\(639\) 0 0
\(640\) 2.07652 0.829496i 0.0820817 0.0327887i
\(641\) 10.8526 + 33.4007i 0.428650 + 1.31925i 0.899455 + 0.437013i \(0.143964\pi\)
−0.470805 + 0.882237i \(0.656036\pi\)
\(642\) 0 0
\(643\) −20.9529 + 28.8392i −0.826302 + 1.13731i 0.162298 + 0.986742i \(0.448109\pi\)
−0.988600 + 0.150565i \(0.951891\pi\)
\(644\) 15.8825 + 11.5393i 0.625858 + 0.454712i
\(645\) 0 0
\(646\) 0.0389485 + 0.119871i 0.00153241 + 0.00471627i
\(647\) −11.8476 16.3068i −0.465778 0.641088i 0.509917 0.860224i \(-0.329676\pi\)
−0.975694 + 0.219136i \(0.929676\pi\)
\(648\) 0 0
\(649\) −5.26781 3.68791i −0.206780 0.144763i
\(650\) −10.2651 5.56192i −0.402630 0.218156i
\(651\) 0 0
\(652\) −16.5582 + 5.38010i −0.648470 + 0.210701i
\(653\) −23.1905 7.53504i −0.907513 0.294869i −0.182178 0.983266i \(-0.558315\pi\)
−0.725334 + 0.688397i \(0.758315\pi\)
\(654\) 0 0
\(655\) 26.3380 21.9245i 1.02911 0.856660i
\(656\) 1.41525 4.35570i 0.0552563 0.170061i
\(657\) 0 0
\(658\) 26.1631 + 36.0105i 1.01994 + 1.40383i
\(659\) −6.98788 −0.272209 −0.136104 0.990694i \(-0.543458\pi\)
−0.136104 + 0.990694i \(0.543458\pi\)
\(660\) 0 0
\(661\) −3.61827 −0.140735 −0.0703673 0.997521i \(-0.522417\pi\)
−0.0703673 + 0.997521i \(0.522417\pi\)
\(662\) 2.24673 + 3.09235i 0.0873215 + 0.120188i
\(663\) 0 0
\(664\) 3.41525 10.5111i 0.132537 0.407908i
\(665\) 14.7850 + 17.7613i 0.573339 + 0.688755i
\(666\) 0 0
\(667\) −15.4051 5.00542i −0.596488 0.193811i
\(668\) −3.14419 + 1.02161i −0.121652 + 0.0395272i
\(669\) 0 0
\(670\) −1.37133 + 5.40952i −0.0529793 + 0.208988i
\(671\) 25.6740 19.3501i 0.991133 0.747001i
\(672\) 0 0
\(673\) −4.68377 6.44665i −0.180546 0.248500i 0.709146 0.705062i \(-0.249081\pi\)
−0.889692 + 0.456562i \(0.849081\pi\)
\(674\) −2.92538 9.00338i −0.112681 0.346797i
\(675\) 0 0
\(676\) 6.10624 + 4.43644i 0.234855 + 0.170632i
\(677\) 8.48443 11.6778i 0.326083 0.448815i −0.614229 0.789128i \(-0.710533\pi\)
0.940312 + 0.340313i \(0.110533\pi\)
\(678\) 0 0
\(679\) −11.3146 34.8229i −0.434216 1.33638i
\(680\) −0.0507240 0.126980i −0.00194518 0.00486946i
\(681\) 0 0
\(682\) −16.8852 + 24.1188i −0.646567 + 0.923557i
\(683\) 29.6723i 1.13538i 0.823242 + 0.567690i \(0.192163\pi\)
−0.823242 + 0.567690i \(0.807837\pi\)
\(684\) 0 0
\(685\) 0.162582 + 2.46408i 0.00621194 + 0.0941476i
\(686\) −17.2645 + 53.1345i −0.659160 + 2.02869i
\(687\) 0 0
\(688\) −2.12663 + 2.92705i −0.0810769 + 0.111593i
\(689\) 1.60321 4.93417i 0.0610774 0.187977i
\(690\) 0 0
\(691\) −26.1812 + 19.0218i −0.995980 + 0.723622i −0.961223 0.275774i \(-0.911066\pi\)
−0.0347577 + 0.999396i \(0.511066\pi\)
\(692\) 5.12859i 0.194960i
\(693\) 0 0
\(694\) 16.5424 0.627943
\(695\) 8.21706 + 20.5702i 0.311691 + 0.780272i
\(696\) 0 0
\(697\) −0.266353 0.0865432i −0.0100888 0.00327806i
\(698\) −17.1791 + 23.6451i −0.650240 + 0.894979i
\(699\) 0 0
\(700\) −17.2736 18.1708i −0.652879 0.686792i
\(701\) −5.86089 18.0380i −0.221363 0.681284i −0.998640 0.0521266i \(-0.983400\pi\)
0.777278 0.629157i \(-0.216600\pi\)
\(702\) 0 0
\(703\) 9.39242i 0.354242i
\(704\) −1.08005 3.13584i −0.0407058 0.118186i
\(705\) 0 0
\(706\) −22.5878 + 16.4110i −0.850103 + 0.617636i
\(707\) 1.05806 0.343785i 0.0397925 0.0129294i
\(708\) 0 0
\(709\) 6.78617 + 4.93044i 0.254860 + 0.185167i 0.707878 0.706335i \(-0.249653\pi\)
−0.453018 + 0.891501i \(0.649653\pi\)
\(710\) 12.6124 + 15.1514i 0.473335 + 0.568620i
\(711\) 0 0
\(712\) 5.79210 1.88197i 0.217068 0.0705297i
\(713\) 20.4290 + 28.1182i 0.765074 + 1.05303i
\(714\) 0 0
\(715\) −8.97588 + 14.8091i −0.335679 + 0.553828i
\(716\) 14.4394 0.539625
\(717\) 0 0
\(718\) −16.1815 + 5.25768i −0.603887 + 0.196215i
\(719\) 2.33218 7.17771i 0.0869756 0.267684i −0.898104 0.439783i \(-0.855055\pi\)
0.985079 + 0.172100i \(0.0550552\pi\)
\(720\) 0 0
\(721\) 2.29620 + 1.66829i 0.0855150 + 0.0621303i
\(722\) −14.0297 4.55851i −0.522130 0.169650i
\(723\) 0 0
\(724\) 9.63223 6.99822i 0.357979 0.260087i
\(725\) 18.1875 + 9.85449i 0.675466 + 0.365987i
\(726\) 0 0
\(727\) 24.2826i 0.900593i 0.892879 + 0.450297i \(0.148682\pi\)
−0.892879 + 0.450297i \(0.851318\pi\)
\(728\) −6.88191 9.47214i −0.255061 0.351061i
\(729\) 0 0
\(730\) −10.2075 6.43425i −0.377797 0.238142i
\(731\) 0.178990 + 0.130044i 0.00662019 + 0.00480985i
\(732\) 0 0
\(733\) −20.3541 6.61345i −0.751796 0.244273i −0.0920424 0.995755i \(-0.529340\pi\)
−0.659754 + 0.751482i \(0.729340\pi\)
\(734\) −9.09719 27.9983i −0.335784 1.03344i
\(735\) 0 0
\(736\) −3.91525 −0.144318
\(737\) 7.91593 + 2.41943i 0.291587 + 0.0891207i
\(738\) 0 0
\(739\) 28.4419 20.6642i 1.04625 0.760147i 0.0747558 0.997202i \(-0.476182\pi\)
0.971496 + 0.237055i \(0.0761823\pi\)
\(740\) −0.670853 10.1674i −0.0246610 0.373761i
\(741\) 0 0
\(742\) 6.54846 9.01318i 0.240401 0.330884i
\(743\) −20.0435 + 27.5875i −0.735324 + 1.01209i 0.263550 + 0.964646i \(0.415107\pi\)
−0.998874 + 0.0474407i \(0.984893\pi\)
\(744\) 0 0
\(745\) 19.6176 1.29438i 0.718732 0.0474225i
\(746\) 13.0044 9.44825i 0.476125 0.345925i
\(747\) 0 0
\(748\) −0.191758 + 0.0660453i −0.00701136 + 0.00241485i
\(749\) 11.1817 0.408572
\(750\) 0 0
\(751\) −11.0690 34.0669i −0.403914 1.24312i −0.921799 0.387669i \(-0.873280\pi\)
0.517884 0.855451i \(-0.326720\pi\)
\(752\) −8.44260 2.74317i −0.307870 0.100033i
\(753\) 0 0
\(754\) 7.81529 + 5.67814i 0.284616 + 0.206786i
\(755\) −40.8408 25.7437i −1.48635 0.936911i
\(756\) 0 0
\(757\) −14.2408 19.6008i −0.517592 0.712404i 0.467584 0.883948i \(-0.345124\pi\)
−0.985176 + 0.171544i \(0.945124\pi\)
\(758\) 18.1230i 0.658256i
\(759\) 0 0
\(760\) −4.46756 1.13254i −0.162055 0.0410817i
\(761\) 8.62191 6.26419i 0.312544 0.227077i −0.420443 0.907319i \(-0.638125\pi\)
0.732987 + 0.680242i \(0.238125\pi\)
\(762\) 0 0
\(763\) 37.4964 + 12.1833i 1.35746 + 0.441065i
\(764\) −8.50930 6.18237i −0.307856 0.223670i
\(765\) 0 0
\(766\) −4.08276 + 12.5654i −0.147516 + 0.454008i
\(767\) 4.30566 1.39899i 0.155468 0.0505147i
\(768\) 0 0
\(769\) −25.8297 −0.931444 −0.465722 0.884931i \(-0.654205\pi\)
−0.465722 + 0.884931i \(0.654205\pi\)
\(770\) −28.1584 + 24.2883i −1.01476 + 0.875289i
\(771\) 0 0
\(772\) −2.86174 3.93885i −0.102996 0.141762i
\(773\) 11.4679 3.72614i 0.412471 0.134020i −0.0954286 0.995436i \(-0.530422\pi\)
0.507899 + 0.861416i \(0.330422\pi\)
\(774\) 0 0
\(775\) −19.1433 40.0449i −0.687647 1.43846i
\(776\) 5.90765 + 4.29216i 0.212072 + 0.154079i
\(777\) 0 0
\(778\) 25.2263 8.19653i 0.904407 0.293860i
\(779\) −7.63693 + 5.54855i −0.273621 + 0.198798i
\(780\) 0 0
\(781\) 23.3510 17.5992i 0.835563 0.629750i
\(782\) 0.239419i 0.00856161i
\(783\) 0 0
\(784\) −5.60624 17.2542i −0.200223 0.616222i
\(785\) 4.07163 6.45938i 0.145323 0.230545i
\(786\) 0 0
\(787\) −10.6725 + 14.6895i −0.380435 + 0.523624i −0.955700 0.294343i \(-0.904899\pi\)
0.575265 + 0.817967i \(0.304899\pi\)
\(788\) −15.1941 4.93686i −0.541267 0.175868i
\(789\) 0 0
\(790\) −13.8197 + 5.52046i −0.491681 + 0.196409i
\(791\) −62.9867 −2.23955
\(792\) 0 0
\(793\) 22.6342i 0.803762i
\(794\) 24.5331 17.8243i 0.870648 0.632562i
\(795\) 0 0
\(796\) 5.16292 15.8898i 0.182995 0.563201i
\(797\) −0.946725 + 1.30306i −0.0335347 + 0.0461566i −0.825455 0.564468i \(-0.809081\pi\)
0.791920 + 0.610624i \(0.209081\pi\)
\(798\) 0 0
\(799\) −0.167746 + 0.516268i −0.00593441 + 0.0182642i
\(800\) 4.91707 + 0.906896i 0.173845 + 0.0320636i
\(801\) 0 0
\(802\) 19.4762i 0.687727i
\(803\) −10.2641 + 14.6612i −0.362213 + 0.517384i
\(804\) 0 0
\(805\) 16.2845 + 40.7659i 0.573954 + 1.43681i
\(806\) −6.40532 19.7136i −0.225618 0.694380i
\(807\) 0 0
\(808\) −0.130413 + 0.179498i −0.00458792 + 0.00631473i
\(809\) −20.7273 15.0593i −0.728733 0.529455i 0.160429 0.987047i \(-0.448712\pi\)
−0.889162 + 0.457592i \(0.848712\pi\)
\(810\) 0 0
\(811\) 13.5506 + 41.7045i 0.475827 + 1.46444i 0.844839 + 0.535020i \(0.179696\pi\)
−0.369012 + 0.929424i \(0.620304\pi\)
\(812\) 12.1932 + 16.7825i 0.427898 + 0.588951i
\(813\) 0 0
\(814\) −15.1111 + 0.265017i −0.529646 + 0.00928883i
\(815\) −37.7370 9.56650i −1.32187 0.335100i
\(816\) 0 0
\(817\) 7.09233 2.30444i 0.248129 0.0806220i
\(818\) 26.9437 + 8.75453i 0.942063 + 0.306095i
\(819\) 0 0
\(820\) 7.87075 6.55183i 0.274859 0.228800i
\(821\) 5.43938 16.7407i 0.189836 0.584254i −0.810163 0.586205i \(-0.800621\pi\)
0.999998 + 0.00195152i \(0.000621189\pi\)
\(822\) 0 0
\(823\) −7.43854 10.2383i −0.259291 0.356884i 0.659447 0.751751i \(-0.270791\pi\)
−0.918738 + 0.394867i \(0.870791\pi\)
\(824\) −0.566045 −0.0197191
\(825\) 0 0
\(826\) 9.72177 0.338264
\(827\) 5.19856 + 7.15520i 0.180772 + 0.248811i 0.889780 0.456389i \(-0.150857\pi\)
−0.709009 + 0.705200i \(0.750857\pi\)
\(828\) 0 0
\(829\) −11.6571 + 35.8767i −0.404866 + 1.24605i 0.516141 + 0.856504i \(0.327368\pi\)
−0.921007 + 0.389546i \(0.872632\pi\)
\(830\) 18.9935 15.8107i 0.659274 0.548798i
\(831\) 0 0
\(832\) 2.22073 + 0.721558i 0.0769899 + 0.0250155i
\(833\) −1.05510 + 0.342823i −0.0365571 + 0.0118781i
\(834\) 0 0
\(835\) −7.16576 1.81655i −0.247981 0.0628643i
\(836\) −1.99813 + 6.53752i −0.0691068 + 0.226105i
\(837\) 0 0
\(838\) 9.10044 + 12.5257i 0.314369 + 0.432692i
\(839\) −11.8934 36.6041i −0.410606 1.26372i −0.916123 0.400898i \(-0.868698\pi\)
0.505517 0.862817i \(-0.331302\pi\)
\(840\) 0 0
\(841\) 9.61452 + 6.98536i 0.331535 + 0.240874i
\(842\) 12.6293 17.3828i 0.435236 0.599051i
\(843\) 0 0
\(844\) 4.86578 + 14.9753i 0.167487 + 0.515472i
\(845\) 6.26080 + 15.6730i 0.215378 + 0.539168i
\(846\) 0 0
\(847\) 33.9647 + 43.4580i 1.16704 + 1.49324i
\(848\) 2.22187i 0.0762994i
\(849\) 0 0
\(850\) 0.0554570 0.300680i 0.00190216 0.0103133i
\(851\) −5.51328 + 16.9681i −0.188993 + 0.581660i
\(852\) 0 0
\(853\) −29.9122 + 41.1706i −1.02417 + 1.40965i −0.114936 + 0.993373i \(0.536666\pi\)
−0.909237 + 0.416280i \(0.863334\pi\)
\(854\) −15.0196 + 46.2256i −0.513961 + 1.58181i
\(855\) 0 0
\(856\) −1.80412 + 1.31077i −0.0616636 + 0.0448012i
\(857\) 11.5197i 0.393506i −0.980453 0.196753i \(-0.936960\pi\)
0.980453 0.196753i \(-0.0630397\pi\)
\(858\) 0 0
\(859\) −23.9497 −0.817153 −0.408577 0.912724i \(-0.633975\pi\)
−0.408577 + 0.912724i \(0.633975\pi\)
\(860\) −7.51292 + 3.00114i −0.256188 + 0.102338i
\(861\) 0 0
\(862\) −25.1450 8.17010i −0.856441 0.278275i
\(863\) −23.5170 + 32.3684i −0.800530 + 1.10183i 0.192187 + 0.981358i \(0.438442\pi\)
−0.992716 + 0.120476i \(0.961558\pi\)
\(864\) 0 0
\(865\) 6.11520 9.70137i 0.207923 0.329856i
\(866\) 10.1611 + 31.2725i 0.345287 + 1.06268i
\(867\) 0 0
\(868\) 44.5114i 1.51081i
\(869\) 7.18793 + 20.8696i 0.243834 + 0.707954i
\(870\) 0 0
\(871\) −4.71460 + 3.42536i −0.159748 + 0.116064i
\(872\) −7.47804 + 2.42976i −0.253238 + 0.0822821i
\(873\) 0 0
\(874\) 6.52871 + 4.74338i 0.220837 + 0.160447i
\(875\) −11.0087 54.9689i −0.372161 1.85829i
\(876\) 0 0
\(877\) 24.7104 8.02891i 0.834413 0.271117i 0.139510 0.990221i \(-0.455447\pi\)
0.694903 + 0.719104i \(0.255447\pi\)
\(878\) −7.15897 9.85347i −0.241603 0.332539i
\(879\) 0 0
\(880\) 1.69605 7.21965i 0.0571740 0.243374i
\(881\) −25.1372 −0.846893 −0.423446 0.905921i \(-0.639180\pi\)
−0.423446 + 0.905921i \(0.639180\pi\)
\(882\) 0 0
\(883\) 41.3431 13.4332i 1.39131 0.452063i 0.484937 0.874549i \(-0.338843\pi\)
0.906369 + 0.422486i \(0.138843\pi\)
\(884\) 0.0441236 0.135798i 0.00148404 0.00456739i
\(885\) 0 0
\(886\) −13.4370 9.76254i −0.451424 0.327979i
\(887\) 27.2078 + 8.84036i 0.913549 + 0.296830i 0.727818 0.685770i \(-0.240535\pi\)
0.185731 + 0.982601i \(0.440535\pi\)
\(888\) 0 0
\(889\) −58.6701 + 42.6263i −1.96773 + 1.42964i
\(890\) 13.2005 + 3.34638i 0.442481 + 0.112171i
\(891\) 0 0
\(892\) 14.5556i 0.487358i
\(893\) 10.7547 + 14.8026i 0.359892 + 0.495349i
\(894\) 0 0
\(895\) 27.3139 + 17.2171i 0.913002 + 0.575506i
\(896\) 4.05657 + 2.94727i 0.135520 + 0.0984614i
\(897\) 0 0
\(898\) −5.10113 1.65746i −0.170227 0.0553100i
\(899\) 11.3488 + 34.9281i 0.378504 + 1.16492i
\(900\) 0 0
\(901\) 0.135868 0.00452643
\(902\) −9.14237 12.1302i −0.304407 0.403893i
\(903\) 0 0
\(904\) 10.1626 7.38357i 0.338003 0.245574i
\(905\) 26.5651 1.75278i 0.883053 0.0582645i
\(906\) 0 0
\(907\) −28.0438 + 38.5990i −0.931179 + 1.28166i 0.0282187 + 0.999602i \(0.491017\pi\)
−0.959398 + 0.282056i \(0.908983\pi\)
\(908\) −5.78178 + 7.95794i −0.191875 + 0.264094i
\(909\) 0 0
\(910\) −1.72365 26.1235i −0.0571385 0.865987i
\(911\) 40.3003 29.2799i 1.33521 0.970085i 0.335602 0.942004i \(-0.391060\pi\)
0.999606 0.0280809i \(-0.00893959\pi\)
\(912\) 0 0
\(913\) −22.0621 29.2724i −0.730150 0.968775i
\(914\) 3.61237 0.119487
\(915\) 0 0
\(916\) −4.80456 14.7869i −0.158747 0.488573i
\(917\) 73.0845 + 23.7466i 2.41346 + 0.784182i
\(918\) 0 0
\(919\) −34.7058 25.2153i −1.14484 0.831775i −0.157053 0.987590i \(-0.550199\pi\)
−0.987786 + 0.155815i \(0.950199\pi\)
\(920\) −7.40619 4.66845i −0.244175 0.153914i
\(921\) 0 0
\(922\) −23.9008 32.8967i −0.787132 1.08339i
\(923\) 20.5862i 0.677602i
\(924\) 0 0
\(925\) 10.8543 20.0328i 0.356889 0.658674i
\(926\) 1.71415 1.24540i 0.0563303 0.0409264i
\(927\) 0 0
\(928\) −3.93464 1.27844i −0.129161 0.0419669i
\(929\) 3.20719 + 2.33016i 0.105224 + 0.0764500i 0.639153 0.769079i \(-0.279285\pi\)
−0.533929 + 0.845529i \(0.679285\pi\)
\(930\) 0 0
\(931\) −11.5553 + 35.5635i −0.378709 + 1.16555i
\(932\) 24.6292 8.00252i 0.806757 0.262131i
\(933\) 0 0
\(934\) −13.7549 −0.450075
\(935\) −0.441484 0.103714i −0.0144381 0.00339182i
\(936\) 0 0
\(937\) −1.24563 1.71446i −0.0406929 0.0560090i 0.788186 0.615437i \(-0.211021\pi\)
−0.828879 + 0.559429i \(0.811021\pi\)
\(938\) −11.9016 + 3.86707i −0.388601 + 0.126264i
\(939\) 0 0
\(940\) −12.6993 15.2558i −0.414207 0.497589i
\(941\) 4.08118 + 2.96515i 0.133043 + 0.0966612i 0.652316 0.757947i \(-0.273797\pi\)
−0.519274 + 0.854608i \(0.673797\pi\)
\(942\) 0 0
\(943\) −17.0537 + 5.54107i −0.555344 + 0.180442i
\(944\) −1.56856 + 1.13963i −0.0510524 + 0.0370917i
\(945\) 0 0
\(946\) 3.90765 + 11.3456i 0.127049 + 0.368877i
\(947\) 0.986192i 0.0320470i −0.999872 0.0160235i \(-0.994899\pi\)
0.999872 0.0160235i \(-0.00510065\pi\)
\(948\) 0 0
\(949\) −3.89364 11.9834i −0.126393 0.388998i
\(950\) −7.10052 7.46935i −0.230371 0.242338i
\(951\) 0 0
\(952\) 0.180227 0.248061i 0.00584118 0.00803969i
\(953\) −21.8386 7.09580i −0.707422 0.229855i −0.0668608 0.997762i \(-0.521298\pi\)
−0.640562 + 0.767907i \(0.721298\pi\)
\(954\) 0 0
\(955\) −8.72470 21.8410i −0.282325 0.706758i
\(956\) −19.9960 −0.646718
\(957\) 0 0
\(958\) 31.4107i 1.01484i
\(959\) −4.47994 + 3.25486i −0.144665 + 0.105105i
\(960\) 0 0
\(961\) 14.7718 45.4628i 0.476508 1.46654i
\(962\) 6.25426 8.60824i 0.201645 0.277541i
\(963\) 0 0
\(964\) −2.78542 + 8.57264i −0.0897123 + 0.276106i
\(965\) −0.716756 10.8631i −0.0230732 0.349695i
\(966\) 0 0
\(967\) 20.1267i 0.647231i −0.946189 0.323616i \(-0.895102\pi\)
0.946189 0.323616i \(-0.104898\pi\)
\(968\) −10.5744 3.03026i −0.339873 0.0973963i
\(969\) 0 0
\(970\) 6.05719 + 15.1633i 0.194485 + 0.486863i
\(971\) 6.77852 + 20.8621i 0.217533 + 0.669498i 0.998964 + 0.0455060i \(0.0144900\pi\)
−0.781431 + 0.623991i \(0.785510\pi\)
\(972\) 0 0
\(973\) −29.1959 + 40.1847i −0.935978 + 1.28826i
\(974\) −6.07597 4.41445i −0.194687 0.141448i
\(975\) 0 0
\(976\) −2.99542 9.21895i −0.0958810 0.295091i
\(977\) −34.7133 47.7788i −1.11058 1.52858i −0.820562 0.571557i \(-0.806340\pi\)
−0.290015 0.957022i \(-0.593660\pi\)
\(978\) 0 0
\(979\) 5.90396 19.3167i 0.188691 0.617365i
\(980\) 9.96860 39.3232i 0.318435 1.25613i
\(981\) 0 0
\(982\) 10.7106 3.48008i 0.341788 0.111054i
\(983\) −45.9751 14.9382i −1.46638 0.476455i −0.536367 0.843985i \(-0.680204\pi\)
−0.930012 + 0.367530i \(0.880204\pi\)
\(984\) 0 0
\(985\) −22.8549 27.4557i −0.728219 0.874813i
\(986\) −0.0781772 + 0.240605i −0.00248967 + 0.00766241i
\(987\) 0 0
\(988\) −2.82890 3.89364i −0.0899992 0.123873i
\(989\) 14.1655 0.450437
\(990\) 0 0
\(991\) −55.0154 −1.74762 −0.873811 0.486266i \(-0.838359\pi\)
−0.873811 + 0.486266i \(0.838359\pi\)
\(992\) 5.21781 + 7.18170i 0.165666 + 0.228019i
\(993\) 0 0
\(994\) −13.6606 + 42.0431i −0.433289 + 1.33353i
\(995\) 28.7130 23.9015i 0.910262 0.757728i
\(996\) 0 0
\(997\) 21.8457 + 7.09810i 0.691861 + 0.224799i 0.633781 0.773513i \(-0.281502\pi\)
0.0580799 + 0.998312i \(0.481502\pi\)
\(998\) −25.6603 + 8.33753i −0.812262 + 0.263920i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.ba.h.289.1 16
3.2 odd 2 110.2.j.b.69.4 yes 16
5.4 even 2 inner 990.2.ba.h.289.3 16
11.4 even 5 inner 990.2.ba.h.829.3 16
12.11 even 2 880.2.cd.b.289.2 16
15.2 even 4 550.2.h.j.201.2 8
15.8 even 4 550.2.h.n.201.1 8
15.14 odd 2 110.2.j.b.69.2 yes 16
33.2 even 10 1210.2.b.l.969.5 8
33.20 odd 10 1210.2.b.k.969.1 8
33.26 odd 10 110.2.j.b.59.2 16
55.4 even 10 inner 990.2.ba.h.829.1 16
60.59 even 2 880.2.cd.b.289.4 16
132.59 even 10 880.2.cd.b.609.4 16
165.2 odd 20 6050.2.a.da.1.1 4
165.53 even 20 6050.2.a.dd.1.3 4
165.59 odd 10 110.2.j.b.59.4 yes 16
165.68 odd 20 6050.2.a.dl.1.4 4
165.92 even 20 550.2.h.j.301.2 8
165.119 odd 10 1210.2.b.k.969.7 8
165.134 even 10 1210.2.b.l.969.3 8
165.152 even 20 6050.2.a.di.1.2 4
165.158 even 20 550.2.h.n.301.1 8
660.59 even 10 880.2.cd.b.609.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.j.b.59.2 16 33.26 odd 10
110.2.j.b.59.4 yes 16 165.59 odd 10
110.2.j.b.69.2 yes 16 15.14 odd 2
110.2.j.b.69.4 yes 16 3.2 odd 2
550.2.h.j.201.2 8 15.2 even 4
550.2.h.j.301.2 8 165.92 even 20
550.2.h.n.201.1 8 15.8 even 4
550.2.h.n.301.1 8 165.158 even 20
880.2.cd.b.289.2 16 12.11 even 2
880.2.cd.b.289.4 16 60.59 even 2
880.2.cd.b.609.2 16 660.59 even 10
880.2.cd.b.609.4 16 132.59 even 10
990.2.ba.h.289.1 16 1.1 even 1 trivial
990.2.ba.h.289.3 16 5.4 even 2 inner
990.2.ba.h.829.1 16 55.4 even 10 inner
990.2.ba.h.829.3 16 11.4 even 5 inner
1210.2.b.k.969.1 8 33.20 odd 10
1210.2.b.k.969.7 8 165.119 odd 10
1210.2.b.l.969.3 8 165.134 even 10
1210.2.b.l.969.5 8 33.2 even 10
6050.2.a.da.1.1 4 165.2 odd 20
6050.2.a.dd.1.3 4 165.53 even 20
6050.2.a.di.1.2 4 165.152 even 20
6050.2.a.dl.1.4 4 165.68 odd 20