Properties

Label 110.2.j.b.59.4
Level $110$
Weight $2$
Character 110.59
Analytic conductor $0.878$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [110,2,Mod(9,110)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(110, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 6])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("110.9"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 110 = 2 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 110.j (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.878354422234\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 8 x^{14} + 10 x^{13} - 109 x^{12} + 280 x^{11} - 198 x^{10} - 1168 x^{9} + \cdots + 390625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 59.4
Root \(1.89162 - 1.19237i\) of defining polynomial
Character \(\chi\) \(=\) 110.59
Dual form 110.2.j.b.69.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.587785 - 0.809017i) q^{2} +(1.53884 + 0.500000i) q^{3} +(-0.309017 - 0.951057i) q^{4} +(1.71856 + 1.43058i) q^{5} +(1.30902 - 0.951057i) q^{6} +(-4.76878 + 1.54947i) q^{7} +(-0.951057 - 0.309017i) q^{8} +(-0.309017 - 0.224514i) q^{9} +(2.16751 - 0.549472i) q^{10} +(-0.969425 - 3.17178i) q^{11} -1.61803i q^{12} +(1.37249 - 1.88906i) q^{13} +(-1.54947 + 4.76878i) q^{14} +(1.92930 + 3.06071i) q^{15} +(-0.809017 + 0.587785i) q^{16} +(0.0359433 + 0.0494717i) q^{17} +(-0.363271 + 0.118034i) q^{18} +(0.636930 - 1.96027i) q^{19} +(0.829496 - 2.07652i) q^{20} -8.11314 q^{21} +(-3.13584 - 1.08005i) q^{22} +3.91525i q^{23} +(-1.30902 - 0.951057i) q^{24} +(0.906896 + 4.91707i) q^{25} +(-0.721558 - 2.22073i) q^{26} +(-3.21644 - 4.42705i) q^{27} +(2.94727 + 4.05657i) q^{28} +(1.27844 + 3.93464i) q^{29} +(3.61018 + 0.238203i) q^{30} +(7.18170 + 5.21781i) q^{31} +1.00000i q^{32} +(0.0941007 - 5.36559i) q^{33} +0.0611504 q^{34} +(-10.4121 - 4.15925i) q^{35} +(-0.118034 + 0.363271i) q^{36} +(4.33385 - 1.40815i) q^{37} +(-1.21151 - 1.66751i) q^{38} +(3.05657 - 2.22073i) q^{39} +(-1.19237 - 1.89162i) q^{40} +(-1.41525 + 4.35570i) q^{41} +(-4.76878 + 6.56367i) q^{42} +3.61803i q^{43} +(-2.71698 + 1.90211i) q^{44} +(-0.209880 - 0.827913i) q^{45} +(3.16751 + 2.30133i) q^{46} +(-8.44260 - 2.74317i) q^{47} +(-1.53884 + 0.500000i) q^{48} +(14.6773 - 10.6637i) q^{49} +(4.51105 + 2.15649i) q^{50} +(0.0305752 + 0.0941007i) q^{51} +(-2.22073 - 0.721558i) q^{52} +(1.30598 - 1.79753i) q^{53} -5.47214 q^{54} +(2.87147 - 6.83774i) q^{55} +5.01420 q^{56} +(1.96027 - 2.69808i) q^{57} +(3.93464 + 1.27844i) q^{58} +(-0.599137 - 1.84396i) q^{59} +(2.31472 - 2.78069i) q^{60} +(7.84211 - 5.69763i) q^{61} +(8.44260 - 2.74317i) q^{62} +(1.82151 + 0.591846i) q^{63} +(0.809017 + 0.587785i) q^{64} +(5.06115 - 1.28302i) q^{65} +(-4.28554 - 3.22994i) q^{66} -2.49573i q^{67} +(0.0359433 - 0.0494717i) q^{68} +(-1.95763 + 6.02495i) q^{69} +(-9.48497 + 5.97880i) q^{70} +(-7.13254 + 5.18210i) q^{71} +(0.224514 + 0.309017i) q^{72} +(-5.13205 + 1.66751i) q^{73} +(1.40815 - 4.33385i) q^{74} +(-1.06296 + 8.02003i) q^{75} -2.06115 q^{76} +(9.53757 + 13.6235i) q^{77} -3.77813i q^{78} +(-5.38417 - 3.91183i) q^{79} +(-2.23122 - 0.147217i) q^{80} +(-2.38197 - 7.33094i) q^{81} +(2.69197 + 3.70518i) q^{82} +(-6.49620 - 8.94125i) q^{83} +(2.50710 + 7.71605i) q^{84} +(-0.00900240 + 0.136440i) q^{85} +(2.92705 + 2.12663i) q^{86} +6.69401i q^{87} +(-0.0581575 + 3.31611i) q^{88} -6.09017 q^{89} +(-0.793160 - 0.316839i) q^{90} +(-3.61803 + 11.1352i) q^{91} +(3.72363 - 1.20988i) q^{92} +(8.44260 + 11.6202i) q^{93} +(-7.18170 + 5.21781i) q^{94} +(3.89892 - 2.45766i) q^{95} +(-0.500000 + 1.53884i) q^{96} +(4.29216 - 5.90765i) q^{97} -18.1422i q^{98} +(-0.412541 + 1.19778i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{4} - 6 q^{5} + 12 q^{6} + 4 q^{9} + 4 q^{10} - 20 q^{11} - 12 q^{14} + 2 q^{15} - 4 q^{16} - 16 q^{19} + 6 q^{20} - 16 q^{21} - 12 q^{24} - 16 q^{26} + 16 q^{29} - 2 q^{30} - 4 q^{31} - 8 q^{34}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/110\mathbb{Z}\right)^\times\).

\(n\) \(67\) \(101\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.587785 0.809017i 0.415627 0.572061i
\(3\) 1.53884 + 0.500000i 0.888451 + 0.288675i 0.717462 0.696598i \(-0.245304\pi\)
0.170989 + 0.985273i \(0.445304\pi\)
\(4\) −0.309017 0.951057i −0.154508 0.475528i
\(5\) 1.71856 + 1.43058i 0.768563 + 0.639774i
\(6\) 1.30902 0.951057i 0.534404 0.388267i
\(7\) −4.76878 + 1.54947i −1.80243 + 0.585645i −0.999939 0.0110184i \(-0.996493\pi\)
−0.802491 + 0.596664i \(0.796493\pi\)
\(8\) −0.951057 0.309017i −0.336249 0.109254i
\(9\) −0.309017 0.224514i −0.103006 0.0748380i
\(10\) 2.16751 0.549472i 0.685425 0.173758i
\(11\) −0.969425 3.17178i −0.292293 0.956329i
\(12\) 1.61803i 0.467086i
\(13\) 1.37249 1.88906i 0.380659 0.523932i −0.575100 0.818083i \(-0.695037\pi\)
0.955759 + 0.294151i \(0.0950369\pi\)
\(14\) −1.54947 + 4.76878i −0.414114 + 1.27451i
\(15\) 1.92930 + 3.06071i 0.498144 + 0.790273i
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) 0.0359433 + 0.0494717i 0.00871753 + 0.0119986i 0.813354 0.581770i \(-0.197640\pi\)
−0.804636 + 0.593768i \(0.797640\pi\)
\(18\) −0.363271 + 0.118034i −0.0856239 + 0.0278209i
\(19\) 0.636930 1.96027i 0.146122 0.449717i −0.851032 0.525114i \(-0.824023\pi\)
0.997154 + 0.0753974i \(0.0240226\pi\)
\(20\) 0.829496 2.07652i 0.185481 0.464324i
\(21\) −8.11314 −1.77043
\(22\) −3.13584 1.08005i −0.668564 0.230267i
\(23\) 3.91525i 0.816387i 0.912896 + 0.408193i \(0.133841\pi\)
−0.912896 + 0.408193i \(0.866159\pi\)
\(24\) −1.30902 0.951057i −0.267202 0.194134i
\(25\) 0.906896 + 4.91707i 0.181379 + 0.983413i
\(26\) −0.721558 2.22073i −0.141509 0.435521i
\(27\) −3.21644 4.42705i −0.619004 0.851986i
\(28\) 2.94727 + 4.05657i 0.556982 + 0.766620i
\(29\) 1.27844 + 3.93464i 0.237401 + 0.730644i 0.996794 + 0.0800122i \(0.0254959\pi\)
−0.759393 + 0.650632i \(0.774504\pi\)
\(30\) 3.61018 + 0.238203i 0.659126 + 0.0434897i
\(31\) 7.18170 + 5.21781i 1.28987 + 0.937147i 0.999803 0.0198592i \(-0.00632179\pi\)
0.290069 + 0.957006i \(0.406322\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0.0941007 5.36559i 0.0163808 0.934029i
\(34\) 0.0611504 0.0104872
\(35\) −10.4121 4.15925i −1.75996 0.703042i
\(36\) −0.118034 + 0.363271i −0.0196723 + 0.0605452i
\(37\) 4.33385 1.40815i 0.712481 0.231499i 0.0697209 0.997567i \(-0.477789\pi\)
0.642760 + 0.766067i \(0.277789\pi\)
\(38\) −1.21151 1.66751i −0.196533 0.270505i
\(39\) 3.05657 2.22073i 0.489443 0.355601i
\(40\) −1.19237 1.89162i −0.188531 0.299092i
\(41\) −1.41525 + 4.35570i −0.221025 + 0.680246i 0.777646 + 0.628703i \(0.216414\pi\)
−0.998671 + 0.0515429i \(0.983586\pi\)
\(42\) −4.76878 + 6.56367i −0.735839 + 1.01280i
\(43\) 3.61803i 0.551745i 0.961194 + 0.275873i \(0.0889668\pi\)
−0.961194 + 0.275873i \(0.911033\pi\)
\(44\) −2.71698 + 1.90211i −0.409600 + 0.286754i
\(45\) −0.209880 0.827913i −0.0312870 0.123418i
\(46\) 3.16751 + 2.30133i 0.467023 + 0.339312i
\(47\) −8.44260 2.74317i −1.23148 0.400132i −0.380229 0.924892i \(-0.624155\pi\)
−0.851250 + 0.524760i \(0.824155\pi\)
\(48\) −1.53884 + 0.500000i −0.222113 + 0.0721688i
\(49\) 14.6773 10.6637i 2.09676 1.52338i
\(50\) 4.51105 + 2.15649i 0.637959 + 0.304973i
\(51\) 0.0305752 + 0.0941007i 0.00428138 + 0.0131767i
\(52\) −2.22073 0.721558i −0.307960 0.100062i
\(53\) 1.30598 1.79753i 0.179391 0.246910i −0.709847 0.704356i \(-0.751236\pi\)
0.889237 + 0.457446i \(0.151236\pi\)
\(54\) −5.47214 −0.744663
\(55\) 2.87147 6.83774i 0.387189 0.922000i
\(56\) 5.01420 0.670050
\(57\) 1.96027 2.69808i 0.259644 0.357370i
\(58\) 3.93464 + 1.27844i 0.516643 + 0.167868i
\(59\) −0.599137 1.84396i −0.0780011 0.240063i 0.904451 0.426577i \(-0.140281\pi\)
−0.982452 + 0.186515i \(0.940281\pi\)
\(60\) 2.31472 2.78069i 0.298829 0.358985i
\(61\) 7.84211 5.69763i 1.00408 0.729506i 0.0411202 0.999154i \(-0.486907\pi\)
0.962959 + 0.269648i \(0.0869073\pi\)
\(62\) 8.44260 2.74317i 1.07221 0.348382i
\(63\) 1.82151 + 0.591846i 0.229489 + 0.0745655i
\(64\) 0.809017 + 0.587785i 0.101127 + 0.0734732i
\(65\) 5.06115 1.28302i 0.627758 0.159139i
\(66\) −4.28554 3.22994i −0.527513 0.397578i
\(67\) 2.49573i 0.304902i −0.988311 0.152451i \(-0.951283\pi\)
0.988311 0.152451i \(-0.0487167\pi\)
\(68\) 0.0359433 0.0494717i 0.00435876 0.00599932i
\(69\) −1.95763 + 6.02495i −0.235670 + 0.725319i
\(70\) −9.48497 + 5.97880i −1.13367 + 0.714603i
\(71\) −7.13254 + 5.18210i −0.846477 + 0.615002i −0.924172 0.381975i \(-0.875244\pi\)
0.0776953 + 0.996977i \(0.475244\pi\)
\(72\) 0.224514 + 0.309017i 0.0264592 + 0.0364180i
\(73\) −5.13205 + 1.66751i −0.600662 + 0.195167i −0.593535 0.804808i \(-0.702268\pi\)
−0.00712611 + 0.999975i \(0.502268\pi\)
\(74\) 1.40815 4.33385i 0.163695 0.503800i
\(75\) −1.06296 + 8.02003i −0.122741 + 0.926074i
\(76\) −2.06115 −0.236430
\(77\) 9.53757 + 13.6235i 1.08691 + 1.55254i
\(78\) 3.77813i 0.427789i
\(79\) −5.38417 3.91183i −0.605766 0.440115i 0.242155 0.970238i \(-0.422146\pi\)
−0.847921 + 0.530123i \(0.822146\pi\)
\(80\) −2.23122 0.147217i −0.249458 0.0164594i
\(81\) −2.38197 7.33094i −0.264663 0.814549i
\(82\) 2.69197 + 3.70518i 0.297278 + 0.409169i
\(83\) −6.49620 8.94125i −0.713050 0.981429i −0.999726 0.0234017i \(-0.992550\pi\)
0.286676 0.958028i \(-0.407450\pi\)
\(84\) 2.50710 + 7.71605i 0.273547 + 0.841890i
\(85\) −0.00900240 + 0.136440i −0.000976448 + 0.0147990i
\(86\) 2.92705 + 2.12663i 0.315632 + 0.229320i
\(87\) 6.69401i 0.717673i
\(88\) −0.0581575 + 3.31611i −0.00619961 + 0.353499i
\(89\) −6.09017 −0.645557 −0.322778 0.946475i \(-0.604617\pi\)
−0.322778 + 0.946475i \(0.604617\pi\)
\(90\) −0.793160 0.316839i −0.0836064 0.0333978i
\(91\) −3.61803 + 11.1352i −0.379273 + 1.16728i
\(92\) 3.72363 1.20988i 0.388215 0.126139i
\(93\) 8.44260 + 11.6202i 0.875456 + 1.20496i
\(94\) −7.18170 + 5.21781i −0.740736 + 0.538176i
\(95\) 3.89892 2.45766i 0.400021 0.252151i
\(96\) −0.500000 + 1.53884i −0.0510310 + 0.157057i
\(97\) 4.29216 5.90765i 0.435802 0.599831i −0.533470 0.845819i \(-0.679112\pi\)
0.969273 + 0.245988i \(0.0791124\pi\)
\(98\) 18.1422i 1.83263i
\(99\) −0.412541 + 1.19778i −0.0414620 + 0.120382i
\(100\) 4.39616 2.38197i 0.439616 0.238197i
\(101\) 0.179498 + 0.130413i 0.0178608 + 0.0129766i 0.596680 0.802479i \(-0.296486\pi\)
−0.578819 + 0.815456i \(0.696486\pi\)
\(102\) 0.0941007 + 0.0305752i 0.00931736 + 0.00302739i
\(103\) −0.538341 + 0.174918i −0.0530443 + 0.0172351i −0.335419 0.942069i \(-0.608878\pi\)
0.282375 + 0.959304i \(0.408878\pi\)
\(104\) −1.88906 + 1.37249i −0.185238 + 0.134583i
\(105\) −13.9429 11.6065i −1.36069 1.13268i
\(106\) −0.686596 2.11313i −0.0666881 0.205245i
\(107\) 2.12087 + 0.689113i 0.205033 + 0.0666191i 0.409733 0.912206i \(-0.365622\pi\)
−0.204700 + 0.978825i \(0.565622\pi\)
\(108\) −3.21644 + 4.42705i −0.309502 + 0.425993i
\(109\) −7.86288 −0.753127 −0.376563 0.926391i \(-0.622894\pi\)
−0.376563 + 0.926391i \(0.622894\pi\)
\(110\) −3.84404 6.34219i −0.366515 0.604704i
\(111\) 7.37319 0.699832
\(112\) 2.94727 4.05657i 0.278491 0.383310i
\(113\) −11.9469 3.88177i −1.12387 0.365166i −0.312624 0.949877i \(-0.601208\pi\)
−0.811242 + 0.584710i \(0.801208\pi\)
\(114\) −1.03058 3.17178i −0.0965222 0.297065i
\(115\) −5.60107 + 6.72860i −0.522303 + 0.627445i
\(116\) 3.34700 2.43174i 0.310762 0.225781i
\(117\) −0.848243 + 0.275611i −0.0784200 + 0.0254802i
\(118\) −1.84396 0.599137i −0.169750 0.0551551i
\(119\) −0.248061 0.180227i −0.0227397 0.0165214i
\(120\) −0.889064 3.50710i −0.0811601 0.320153i
\(121\) −9.12043 + 6.14961i −0.829130 + 0.559056i
\(122\) 9.69338i 0.877597i
\(123\) −4.35570 + 5.99511i −0.392740 + 0.540560i
\(124\) 2.74317 8.44260i 0.246344 0.758168i
\(125\) −5.47569 + 9.74766i −0.489761 + 0.871857i
\(126\) 1.54947 1.12576i 0.138038 0.100290i
\(127\) 8.50112 + 11.7008i 0.754353 + 1.03828i 0.997663 + 0.0683289i \(0.0217667\pi\)
−0.243310 + 0.969949i \(0.578233\pi\)
\(128\) 0.951057 0.309017i 0.0840623 0.0273135i
\(129\) −1.80902 + 5.56758i −0.159275 + 0.490198i
\(130\) 1.93688 4.84870i 0.169876 0.425259i
\(131\) 15.3256 1.33900 0.669502 0.742810i \(-0.266507\pi\)
0.669502 + 0.742810i \(0.266507\pi\)
\(132\) −5.13205 + 1.56856i −0.446688 + 0.136526i
\(133\) 10.3350i 0.896159i
\(134\) −2.01909 1.46696i −0.174423 0.126726i
\(135\) 0.805594 12.2095i 0.0693345 1.05083i
\(136\) −0.0188965 0.0581575i −0.00162036 0.00498696i
\(137\) −0.649130 0.893451i −0.0554589 0.0763326i 0.780387 0.625297i \(-0.215022\pi\)
−0.835846 + 0.548964i \(0.815022\pi\)
\(138\) 3.72363 + 5.12513i 0.316976 + 0.436280i
\(139\) 3.06115 + 9.42125i 0.259643 + 0.799100i 0.992879 + 0.119126i \(0.0380092\pi\)
−0.733236 + 0.679974i \(0.761991\pi\)
\(140\) −0.738177 + 11.1878i −0.0623874 + 0.945538i
\(141\) −11.6202 8.44260i −0.978600 0.710995i
\(142\) 8.81631i 0.739848i
\(143\) −7.32222 2.52192i −0.612315 0.210894i
\(144\) 0.381966 0.0318305
\(145\) −3.43173 + 8.59082i −0.284990 + 0.713429i
\(146\) −1.66751 + 5.13205i −0.138004 + 0.424732i
\(147\) 27.9179 9.07108i 2.30263 0.748170i
\(148\) −2.67847 3.68660i −0.220169 0.303036i
\(149\) 7.11314 5.16800i 0.582731 0.423379i −0.256977 0.966418i \(-0.582726\pi\)
0.839708 + 0.543039i \(0.182726\pi\)
\(150\) 5.86355 + 5.57401i 0.478757 + 0.455116i
\(151\) 6.67177 20.5336i 0.542941 1.67100i −0.182894 0.983133i \(-0.558547\pi\)
0.725835 0.687868i \(-0.241453\pi\)
\(152\) −1.21151 + 1.66751i −0.0982667 + 0.135253i
\(153\) 0.0233574i 0.00188833i
\(154\) 16.6276 + 0.291613i 1.33989 + 0.0234988i
\(155\) 4.87770 + 19.2411i 0.391786 + 1.54548i
\(156\) −3.05657 2.22073i −0.244721 0.177801i
\(157\) −3.24760 1.05521i −0.259186 0.0842148i 0.176542 0.984293i \(-0.443509\pi\)
−0.435728 + 0.900078i \(0.643509\pi\)
\(158\) −6.32947 + 2.05657i −0.503546 + 0.163612i
\(159\) 2.90847 2.11313i 0.230657 0.167582i
\(160\) −1.43058 + 1.71856i −0.113097 + 0.135864i
\(161\) −6.06657 18.6710i −0.478113 1.47148i
\(162\) −7.33094 2.38197i −0.575973 0.187145i
\(163\) 10.2336 14.0853i 0.801554 1.10324i −0.191019 0.981586i \(-0.561179\pi\)
0.992572 0.121657i \(-0.0388209\pi\)
\(164\) 4.57985 0.357626
\(165\) 7.83761 9.08646i 0.610157 0.707380i
\(166\) −11.0520 −0.857801
\(167\) −1.94321 + 2.67460i −0.150370 + 0.206967i −0.877556 0.479473i \(-0.840828\pi\)
0.727186 + 0.686440i \(0.240828\pi\)
\(168\) 7.71605 + 2.50710i 0.595306 + 0.193427i
\(169\) 2.33237 + 7.17831i 0.179413 + 0.552178i
\(170\) 0.105091 + 0.0874803i 0.00806008 + 0.00670944i
\(171\) −0.636930 + 0.462757i −0.0487073 + 0.0353879i
\(172\) 3.44095 1.11803i 0.262370 0.0852493i
\(173\) 4.87758 + 1.58482i 0.370836 + 0.120492i 0.488505 0.872561i \(-0.337542\pi\)
−0.117670 + 0.993053i \(0.537542\pi\)
\(174\) 5.41557 + 3.93464i 0.410553 + 0.298284i
\(175\) −11.9436 22.0432i −0.902855 1.66631i
\(176\) 2.64861 + 1.99621i 0.199646 + 0.150470i
\(177\) 3.13712i 0.235801i
\(178\) −3.57971 + 4.92705i −0.268311 + 0.369298i
\(179\) 4.46201 13.7327i 0.333507 1.02643i −0.633947 0.773377i \(-0.718566\pi\)
0.967453 0.253051i \(-0.0814339\pi\)
\(180\) −0.722536 + 0.455447i −0.0538547 + 0.0339470i
\(181\) −9.63223 + 6.99822i −0.715958 + 0.520174i −0.885090 0.465419i \(-0.845903\pi\)
0.169132 + 0.985593i \(0.445903\pi\)
\(182\) 6.88191 + 9.47214i 0.510121 + 0.702121i
\(183\) 14.9166 4.84669i 1.10267 0.358278i
\(184\) 1.20988 3.72363i 0.0891935 0.274509i
\(185\) 9.46246 + 3.77992i 0.695694 + 0.277905i
\(186\) 14.3634 1.05318
\(187\) 0.122069 0.161963i 0.00892658 0.0118439i
\(188\) 8.87707i 0.647427i
\(189\) 22.1981 + 16.1279i 1.61467 + 1.17313i
\(190\) 0.303437 4.59887i 0.0220137 0.333637i
\(191\) 3.25026 + 10.0033i 0.235181 + 0.723812i 0.997097 + 0.0761369i \(0.0242586\pi\)
−0.761917 + 0.647675i \(0.775741\pi\)
\(192\) 0.951057 + 1.30902i 0.0686366 + 0.0944702i
\(193\) −2.86174 3.93885i −0.205993 0.283525i 0.693503 0.720453i \(-0.256066\pi\)
−0.899496 + 0.436929i \(0.856066\pi\)
\(194\) −2.25652 6.94485i −0.162009 0.498612i
\(195\) 8.42982 + 0.556206i 0.603672 + 0.0398308i
\(196\) −14.6773 10.6637i −1.04838 0.761692i
\(197\) 15.9760i 1.13824i 0.822253 + 0.569122i \(0.192717\pi\)
−0.822253 + 0.569122i \(0.807283\pi\)
\(198\) 0.726543 + 1.03779i 0.0516331 + 0.0737527i
\(199\) −16.7076 −1.18437 −0.592184 0.805803i \(-0.701734\pi\)
−0.592184 + 0.805803i \(0.701734\pi\)
\(200\) 0.656948 4.95665i 0.0464532 0.350488i
\(201\) 1.24787 3.84054i 0.0880177 0.270891i
\(202\) 0.211013 0.0685623i 0.0148468 0.00482403i
\(203\) −12.1932 16.7825i −0.855797 1.17790i
\(204\) 0.0800469 0.0581575i 0.00560440 0.00407184i
\(205\) −8.66336 + 5.46090i −0.605075 + 0.381406i
\(206\) −0.174918 + 0.538341i −0.0121871 + 0.0375080i
\(207\) 0.879029 1.20988i 0.0610967 0.0840924i
\(208\) 2.33501i 0.161904i
\(209\) −6.83501 0.119871i −0.472788 0.00829167i
\(210\) −17.5853 + 4.45794i −1.21350 + 0.307627i
\(211\) 12.7388 + 9.25526i 0.876974 + 0.637159i 0.932449 0.361301i \(-0.117667\pi\)
−0.0554754 + 0.998460i \(0.517667\pi\)
\(212\) −2.11313 0.686596i −0.145130 0.0471556i
\(213\) −13.5669 + 4.40815i −0.929589 + 0.302042i
\(214\) 1.80412 1.31077i 0.123327 0.0896025i
\(215\) −5.17588 + 6.21781i −0.352992 + 0.424051i
\(216\) 1.69098 + 5.20431i 0.115057 + 0.354108i
\(217\) −42.3328 13.7548i −2.87374 0.933735i
\(218\) −4.62168 + 6.36120i −0.313020 + 0.430835i
\(219\) −8.73117 −0.589998
\(220\) −7.39041 0.617952i −0.498261 0.0416623i
\(221\) 0.142787 0.00960488
\(222\) 4.33385 5.96504i 0.290869 0.400347i
\(223\) 13.8432 + 4.49794i 0.927011 + 0.301204i 0.733340 0.679862i \(-0.237961\pi\)
0.193671 + 0.981067i \(0.437961\pi\)
\(224\) −1.54947 4.76878i −0.103528 0.318628i
\(225\) 0.823704 1.72307i 0.0549136 0.114871i
\(226\) −10.1626 + 7.38357i −0.676007 + 0.491148i
\(227\) −9.35512 + 3.03966i −0.620921 + 0.201749i −0.602549 0.798082i \(-0.705848\pi\)
−0.0183719 + 0.999831i \(0.505848\pi\)
\(228\) −3.17178 1.03058i −0.210057 0.0682515i
\(229\) −12.5785 9.13881i −0.831210 0.603909i 0.0886913 0.996059i \(-0.471732\pi\)
−0.919901 + 0.392150i \(0.871732\pi\)
\(230\) 2.15132 + 8.48633i 0.141854 + 0.559572i
\(231\) 7.86508 + 25.7331i 0.517484 + 1.69312i
\(232\) 4.13712i 0.271616i
\(233\) 15.2217 20.9509i 0.997206 1.37254i 0.0701824 0.997534i \(-0.477642\pi\)
0.927024 0.375002i \(-0.122358\pi\)
\(234\) −0.275611 + 0.848243i −0.0180172 + 0.0554513i
\(235\) −10.5848 16.7921i −0.690476 1.09539i
\(236\) −1.56856 + 1.13963i −0.102105 + 0.0741834i
\(237\) −6.32947 8.71177i −0.411143 0.565890i
\(238\) −0.291613 + 0.0947508i −0.0189025 + 0.00614178i
\(239\) −6.17911 + 19.0173i −0.399693 + 1.23013i 0.525552 + 0.850761i \(0.323859\pi\)
−0.925246 + 0.379369i \(0.876141\pi\)
\(240\) −3.35988 1.34215i −0.216879 0.0866356i
\(241\) 9.01381 0.580630 0.290315 0.956931i \(-0.406240\pi\)
0.290315 + 0.956931i \(0.406240\pi\)
\(242\) −0.385714 + 10.9932i −0.0247946 + 0.706672i
\(243\) 3.94427i 0.253025i
\(244\) −7.84211 5.69763i −0.502040 0.364753i
\(245\) 40.4791 + 2.67084i 2.58611 + 0.170634i
\(246\) 2.28993 + 7.04767i 0.146000 + 0.449343i
\(247\) −2.82890 3.89364i −0.179998 0.247747i
\(248\) −5.21781 7.18170i −0.331331 0.456038i
\(249\) −5.52599 17.0073i −0.350196 1.07779i
\(250\) 4.66749 + 10.1595i 0.295198 + 0.642540i
\(251\) −1.06115 0.770971i −0.0669792 0.0486632i 0.553792 0.832655i \(-0.313180\pi\)
−0.620771 + 0.783992i \(0.713180\pi\)
\(252\) 1.91525i 0.120650i
\(253\) 12.4183 3.79554i 0.780734 0.238624i
\(254\) 14.4630 0.907488
\(255\) −0.0820731 + 0.205458i −0.00513962 + 0.0128663i
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) 4.24551 1.37945i 0.264827 0.0860477i −0.173594 0.984817i \(-0.555538\pi\)
0.438421 + 0.898770i \(0.355538\pi\)
\(258\) 3.44095 + 4.73607i 0.214224 + 0.294855i
\(259\) −18.4853 + 13.4304i −1.14862 + 0.834522i
\(260\) −2.78421 4.41696i −0.172669 0.273928i
\(261\) 0.488321 1.50290i 0.0302263 0.0930271i
\(262\) 9.00817 12.3987i 0.556526 0.765993i
\(263\) 14.1791i 0.874320i 0.899384 + 0.437160i \(0.144016\pi\)
−0.899384 + 0.437160i \(0.855984\pi\)
\(264\) −1.74755 + 5.07390i −0.107554 + 0.312277i
\(265\) 4.81592 1.22086i 0.295840 0.0749966i
\(266\) 8.36120 + 6.07477i 0.512658 + 0.372468i
\(267\) −9.37181 3.04508i −0.573545 0.186356i
\(268\) −2.37358 + 0.771224i −0.144990 + 0.0471100i
\(269\) −25.8847 + 18.8063i −1.57822 + 1.14664i −0.659516 + 0.751691i \(0.729239\pi\)
−0.918702 + 0.394952i \(0.870761\pi\)
\(270\) −9.40419 7.82831i −0.572321 0.476416i
\(271\) 0.327988 + 1.00944i 0.0199238 + 0.0613192i 0.960524 0.278197i \(-0.0897367\pi\)
−0.940600 + 0.339516i \(0.889737\pi\)
\(272\) −0.0581575 0.0188965i −0.00352631 0.00114577i
\(273\) −11.1352 + 15.3262i −0.673931 + 0.927586i
\(274\) −1.10437 −0.0667172
\(275\) 14.7167 7.64320i 0.887451 0.460902i
\(276\) 6.33501 0.381323
\(277\) 3.89892 5.36641i 0.234264 0.322436i −0.675659 0.737214i \(-0.736141\pi\)
0.909923 + 0.414778i \(0.136141\pi\)
\(278\) 9.42125 + 3.06115i 0.565049 + 0.183596i
\(279\) −1.04780 3.22478i −0.0627299 0.193063i
\(280\) 8.61720 + 7.17320i 0.514976 + 0.428680i
\(281\) −12.6582 + 9.19674i −0.755126 + 0.548631i −0.897412 0.441194i \(-0.854555\pi\)
0.142285 + 0.989826i \(0.454555\pi\)
\(282\) −13.6604 + 4.43854i −0.813465 + 0.264311i
\(283\) 21.3993 + 6.95305i 1.27205 + 0.413316i 0.865775 0.500433i \(-0.166826\pi\)
0.406280 + 0.913749i \(0.366826\pi\)
\(284\) 7.13254 + 5.18210i 0.423239 + 0.307501i
\(285\) 7.22866 1.83249i 0.428189 0.108548i
\(286\) −6.34417 + 4.44146i −0.375139 + 0.262629i
\(287\) 22.9643i 1.35554i
\(288\) 0.224514 0.309017i 0.0132296 0.0182090i
\(289\) 5.25213 16.1644i 0.308949 0.950847i
\(290\) 4.93300 + 7.82589i 0.289676 + 0.459552i
\(291\) 9.55877 6.94485i 0.560345 0.407115i
\(292\) 3.17178 + 4.36559i 0.185615 + 0.255477i
\(293\) −17.2985 + 5.62063i −1.01059 + 0.328360i −0.767089 0.641540i \(-0.778296\pi\)
−0.243500 + 0.969901i \(0.578296\pi\)
\(294\) 9.07108 27.9179i 0.529036 1.62821i
\(295\) 1.60827 4.02606i 0.0936370 0.234406i
\(296\) −4.55688 −0.264863
\(297\) −10.9236 + 14.4935i −0.633849 + 0.841001i
\(298\) 8.79232i 0.509326i
\(299\) 7.39616 + 5.37363i 0.427731 + 0.310765i
\(300\) 7.95598 1.46739i 0.459339 0.0847197i
\(301\) −5.60604 17.2536i −0.323127 0.994482i
\(302\) −12.6905 17.4669i −0.730254 1.00511i
\(303\) 0.211013 + 0.290435i 0.0121224 + 0.0166850i
\(304\) 0.636930 + 1.96027i 0.0365305 + 0.112429i
\(305\) 21.6280 + 1.42703i 1.23842 + 0.0817118i
\(306\) −0.0188965 0.0137291i −0.00108024 0.000784841i
\(307\) 12.3820i 0.706676i 0.935496 + 0.353338i \(0.114953\pi\)
−0.935496 + 0.353338i \(0.885047\pi\)
\(308\) 10.0094 13.2806i 0.570339 0.756735i
\(309\) −0.915880 −0.0521026
\(310\) 18.4334 + 7.36349i 1.04695 + 0.418218i
\(311\) 2.90784 8.94941i 0.164889 0.507475i −0.834140 0.551553i \(-0.814035\pi\)
0.999028 + 0.0440788i \(0.0140353\pi\)
\(312\) −3.59321 + 1.16751i −0.203426 + 0.0660970i
\(313\) 8.95297 + 12.3227i 0.506052 + 0.696520i 0.983247 0.182277i \(-0.0583467\pi\)
−0.477196 + 0.878797i \(0.658347\pi\)
\(314\) −2.76257 + 2.00712i −0.155901 + 0.113269i
\(315\) 2.28370 + 3.62294i 0.128672 + 0.204129i
\(316\) −2.05657 + 6.32947i −0.115691 + 0.356061i
\(317\) −7.90964 + 10.8867i −0.444250 + 0.611457i −0.971150 0.238470i \(-0.923354\pi\)
0.526900 + 0.849927i \(0.323354\pi\)
\(318\) 3.59506i 0.201601i
\(319\) 11.2405 7.86928i 0.629346 0.440595i
\(320\) 0.549472 + 2.16751i 0.0307164 + 0.121167i
\(321\) 2.91913 + 2.12087i 0.162930 + 0.118376i
\(322\) −18.6710 6.06657i −1.04049 0.338077i
\(323\) 0.119871 0.0389485i 0.00666982 0.00216715i
\(324\) −6.23607 + 4.53077i −0.346448 + 0.251709i
\(325\) 10.5334 + 5.03542i 0.584285 + 0.279315i
\(326\) −5.38010 16.5582i −0.297976 0.917076i
\(327\) −12.0997 3.93144i −0.669116 0.217409i
\(328\) 2.69197 3.70518i 0.148639 0.204584i
\(329\) 44.5114 2.45399
\(330\) −2.74427 11.6816i −0.151067 0.643053i
\(331\) −3.82236 −0.210096 −0.105048 0.994467i \(-0.533500\pi\)
−0.105048 + 0.994467i \(0.533500\pi\)
\(332\) −6.49620 + 8.94125i −0.356525 + 0.490715i
\(333\) −1.65538 0.537867i −0.0907145 0.0294749i
\(334\) 1.02161 + 3.14419i 0.0558999 + 0.172042i
\(335\) 3.57034 4.28907i 0.195069 0.234337i
\(336\) 6.56367 4.76878i 0.358077 0.260158i
\(337\) 9.00338 2.92538i 0.490445 0.159355i −0.0533455 0.998576i \(-0.516988\pi\)
0.543791 + 0.839221i \(0.316988\pi\)
\(338\) 7.17831 + 2.33237i 0.390449 + 0.126864i
\(339\) −16.4434 11.9469i −0.893086 0.648865i
\(340\) 0.132544 0.0336004i 0.00718820 0.00182224i
\(341\) 9.58765 27.8371i 0.519201 1.50746i
\(342\) 0.787289i 0.0425717i
\(343\) −32.8390 + 45.1989i −1.77314 + 2.44051i
\(344\) 1.11803 3.44095i 0.0602804 0.185524i
\(345\) −11.9835 + 7.55371i −0.645168 + 0.406678i
\(346\) 4.14912 3.01451i 0.223058 0.162061i
\(347\) 9.72341 + 13.3831i 0.521980 + 0.718444i 0.985882 0.167443i \(-0.0535510\pi\)
−0.463902 + 0.885887i \(0.653551\pi\)
\(348\) 6.36638 2.06856i 0.341274 0.110887i
\(349\) −9.03161 + 27.7964i −0.483451 + 1.48791i 0.350761 + 0.936465i \(0.385923\pi\)
−0.834212 + 0.551444i \(0.814077\pi\)
\(350\) −24.8536 3.29407i −1.32848 0.176075i
\(351\) −12.7775 −0.682012
\(352\) 3.17178 0.969425i 0.169057 0.0516705i
\(353\) 27.9200i 1.48603i −0.669272 0.743017i \(-0.733394\pi\)
0.669272 0.743017i \(-0.266606\pi\)
\(354\) −2.53799 1.84396i −0.134892 0.0980051i
\(355\) −19.6711 1.29791i −1.04403 0.0688862i
\(356\) 1.88197 + 5.79210i 0.0997440 + 0.306980i
\(357\) −0.291613 0.401371i −0.0154338 0.0212428i
\(358\) −8.48725 11.6817i −0.448565 0.617397i
\(359\) −5.25768 16.1815i −0.277490 0.854025i −0.988550 0.150894i \(-0.951785\pi\)
0.711060 0.703131i \(-0.248215\pi\)
\(360\) −0.0562321 + 0.852249i −0.00296369 + 0.0449175i
\(361\) 11.9343 + 8.67081i 0.628123 + 0.456358i
\(362\) 11.9061i 0.625770i
\(363\) −17.1097 + 4.90307i −0.898027 + 0.257344i
\(364\) 11.7082 0.613677
\(365\) −11.2052 4.47609i −0.586509 0.234289i
\(366\) 4.84669 14.9166i 0.253341 0.779702i
\(367\) 27.9983 9.09719i 1.46150 0.474870i 0.532971 0.846133i \(-0.321075\pi\)
0.928527 + 0.371264i \(0.121075\pi\)
\(368\) −2.30133 3.16751i −0.119965 0.165118i
\(369\) 1.41525 1.02824i 0.0736751 0.0535281i
\(370\) 8.61991 5.43351i 0.448128 0.282475i
\(371\) −3.44273 + 10.5956i −0.178738 + 0.550098i
\(372\) 8.44260 11.6202i 0.437728 0.602481i
\(373\) 16.0743i 0.832297i −0.909297 0.416149i \(-0.863380\pi\)
0.909297 0.416149i \(-0.136620\pi\)
\(374\) −0.0592807 0.193956i −0.00306533 0.0100292i
\(375\) −13.3000 + 12.2623i −0.686812 + 0.633220i
\(376\) 7.18170 + 5.21781i 0.370368 + 0.269088i
\(377\) 9.18743 + 2.98518i 0.473177 + 0.153744i
\(378\) 26.0954 8.47892i 1.34220 0.436109i
\(379\) 14.6618 10.6524i 0.753125 0.547178i −0.143669 0.989626i \(-0.545890\pi\)
0.896794 + 0.442448i \(0.145890\pi\)
\(380\) −3.54221 2.94864i −0.181712 0.151262i
\(381\) 7.23149 + 22.2562i 0.370480 + 1.14022i
\(382\) 10.0033 + 3.25026i 0.511812 + 0.166298i
\(383\) 7.76587 10.6888i 0.396817 0.546172i −0.563124 0.826372i \(-0.690401\pi\)
0.959942 + 0.280200i \(0.0904008\pi\)
\(384\) 1.61803 0.0825700
\(385\) −3.09853 + 37.0570i −0.157916 + 1.88860i
\(386\) −4.86869 −0.247810
\(387\) 0.812299 1.11803i 0.0412915 0.0568329i
\(388\) −6.94485 2.25652i −0.352572 0.114557i
\(389\) 8.19653 + 25.2263i 0.415580 + 1.27902i 0.911731 + 0.410788i \(0.134746\pi\)
−0.496150 + 0.868237i \(0.665254\pi\)
\(390\) 5.40490 6.49294i 0.273688 0.328783i
\(391\) −0.193694 + 0.140727i −0.00979553 + 0.00711687i
\(392\) −17.2542 + 5.60624i −0.871470 + 0.283158i
\(393\) 23.5837 + 7.66280i 1.18964 + 0.386537i
\(394\) 12.9249 + 9.39047i 0.651145 + 0.473085i
\(395\) −3.65684 14.4252i −0.183996 0.725810i
\(396\) 1.26664 + 0.0222142i 0.0636512 + 0.00111630i
\(397\) 30.3246i 1.52195i −0.648783 0.760974i \(-0.724722\pi\)
0.648783 0.760974i \(-0.275278\pi\)
\(398\) −9.82047 + 13.5167i −0.492256 + 0.677532i
\(399\) −5.16751 + 15.9039i −0.258699 + 0.796193i
\(400\) −3.62387 3.44493i −0.181194 0.172247i
\(401\) −15.7565 + 11.4478i −0.786844 + 0.571676i −0.907025 0.421076i \(-0.861652\pi\)
0.120181 + 0.992752i \(0.461652\pi\)
\(402\) −2.37358 3.26696i −0.118384 0.162941i
\(403\) 19.7136 6.40532i 0.982002 0.319072i
\(404\) 0.0685623 0.211013i 0.00341110 0.0104983i
\(405\) 6.39392 16.0062i 0.317717 0.795357i
\(406\) −20.7444 −1.02952
\(407\) −8.66771 12.3809i −0.429642 0.613701i
\(408\) 0.0989434i 0.00489843i
\(409\) −22.9197 16.6521i −1.13330 0.823394i −0.147132 0.989117i \(-0.547004\pi\)
−0.986172 + 0.165723i \(0.947004\pi\)
\(410\) −0.674234 + 10.2186i −0.0332981 + 0.504663i
\(411\) −0.552183 1.69944i −0.0272372 0.0838274i
\(412\) 0.332713 + 0.457940i 0.0163916 + 0.0225611i
\(413\) 5.71431 + 7.86508i 0.281183 + 0.387015i
\(414\) −0.462133 1.42230i −0.0227126 0.0699022i
\(415\) 1.62705 24.6594i 0.0798685 1.21048i
\(416\) 1.88906 + 1.37249i 0.0926190 + 0.0672916i
\(417\) 16.0284i 0.784914i
\(418\) −4.11450 + 5.45918i −0.201247 + 0.267017i
\(419\) 15.4826 0.756374 0.378187 0.925729i \(-0.376548\pi\)
0.378187 + 0.925729i \(0.376548\pi\)
\(420\) −6.72982 + 16.8471i −0.328381 + 0.822054i
\(421\) 6.63964 20.4347i 0.323596 0.995927i −0.648474 0.761237i \(-0.724592\pi\)
0.972070 0.234690i \(-0.0754076\pi\)
\(422\) 14.9753 4.86578i 0.728988 0.236862i
\(423\) 1.99303 + 2.74317i 0.0969043 + 0.133377i
\(424\) −1.79753 + 1.30598i −0.0872959 + 0.0634242i
\(425\) −0.210659 + 0.221601i −0.0102185 + 0.0107492i
\(426\) −4.40815 + 13.5669i −0.213576 + 0.657319i
\(427\) −28.5690 + 39.3219i −1.38255 + 1.90292i
\(428\) 2.23002i 0.107792i
\(429\) −10.0068 7.54195i −0.483132 0.364129i
\(430\) 1.98801 + 7.84211i 0.0958702 + 0.378180i
\(431\) −21.3896 15.5404i −1.03030 0.748557i −0.0619316 0.998080i \(-0.519726\pi\)
−0.968369 + 0.249523i \(0.919726\pi\)
\(432\) 5.20431 + 1.69098i 0.250393 + 0.0813575i
\(433\) −31.2725 + 10.1611i −1.50286 + 0.488309i −0.940851 0.338821i \(-0.889972\pi\)
−0.562010 + 0.827130i \(0.689972\pi\)
\(434\) −36.0105 + 26.1631i −1.72856 + 1.25587i
\(435\) −9.57630 + 11.5041i −0.459148 + 0.551577i
\(436\) 2.42976 + 7.47804i 0.116365 + 0.358133i
\(437\) 7.67495 + 2.49374i 0.367143 + 0.119292i
\(438\) −5.13205 + 7.06367i −0.245219 + 0.337515i
\(439\) 12.1796 0.581299 0.290649 0.956830i \(-0.406129\pi\)
0.290649 + 0.956830i \(0.406129\pi\)
\(440\) −4.84391 + 5.61574i −0.230924 + 0.267720i
\(441\) −6.92969 −0.329985
\(442\) 0.0839280 0.115517i 0.00399205 0.00549458i
\(443\) −15.7961 5.13247i −0.750496 0.243851i −0.0913015 0.995823i \(-0.529103\pi\)
−0.659195 + 0.751972i \(0.729103\pi\)
\(444\) −2.27844 7.01232i −0.108130 0.332790i
\(445\) −10.4663 8.71246i −0.496151 0.413010i
\(446\) 11.7757 8.55558i 0.557598 0.405119i
\(447\) 13.5300 4.39616i 0.639947 0.207931i
\(448\) −4.76878 1.54947i −0.225304 0.0732057i
\(449\) −4.33928 3.15267i −0.204783 0.148784i 0.480667 0.876903i \(-0.340395\pi\)
−0.685450 + 0.728119i \(0.740395\pi\)
\(450\) −0.909830 1.67918i −0.0428898 0.0791575i
\(451\) 15.1873 + 0.266353i 0.715143 + 0.0125421i
\(452\) 12.5617i 0.590852i
\(453\) 20.5336 28.2621i 0.964753 1.32787i
\(454\) −3.03966 + 9.35512i −0.142658 + 0.439058i
\(455\) −22.1475 + 13.9606i −1.03829 + 0.654481i
\(456\) −2.69808 + 1.96027i −0.126349 + 0.0917981i
\(457\) −2.12330 2.92247i −0.0993237 0.136707i 0.756462 0.654037i \(-0.226926\pi\)
−0.855786 + 0.517330i \(0.826926\pi\)
\(458\) −14.7869 + 4.80456i −0.690947 + 0.224502i
\(459\) 0.103404 0.318246i 0.00482650 0.0148544i
\(460\) 8.13010 + 3.24769i 0.379068 + 0.151424i
\(461\) −40.6625 −1.89384 −0.946922 0.321464i \(-0.895825\pi\)
−0.946922 + 0.321464i \(0.895825\pi\)
\(462\) 25.4415 + 8.76257i 1.18365 + 0.407672i
\(463\) 2.11880i 0.0984690i −0.998787 0.0492345i \(-0.984322\pi\)
0.998787 0.0492345i \(-0.0156782\pi\)
\(464\) −3.34700 2.43174i −0.155381 0.112891i
\(465\) −2.11454 + 32.0479i −0.0980596 + 1.48618i
\(466\) −8.00252 24.6292i −0.370709 1.14093i
\(467\) −8.08494 11.1280i −0.374126 0.514941i 0.579890 0.814695i \(-0.303095\pi\)
−0.954017 + 0.299754i \(0.903095\pi\)
\(468\) 0.524243 + 0.721558i 0.0242331 + 0.0333540i
\(469\) 3.86707 + 11.9016i 0.178565 + 0.549565i
\(470\) −19.8067 1.30686i −0.913613 0.0602810i
\(471\) −4.46993 3.24760i −0.205964 0.149641i
\(472\) 1.93885i 0.0892428i
\(473\) 11.4756 3.50741i 0.527650 0.161271i
\(474\) −10.7683 −0.494606
\(475\) 10.2164 + 1.35407i 0.468761 + 0.0621289i
\(476\) −0.0947508 + 0.291613i −0.00434289 + 0.0133661i
\(477\) −0.807142 + 0.262256i −0.0369565 + 0.0120079i
\(478\) 11.7534 + 16.1771i 0.537586 + 0.739924i
\(479\) 25.4118 18.4628i 1.16110 0.843586i 0.171180 0.985240i \(-0.445242\pi\)
0.989916 + 0.141654i \(0.0452421\pi\)
\(480\) −3.06071 + 1.92930i −0.139702 + 0.0880602i
\(481\) 3.28806 10.1196i 0.149922 0.461414i
\(482\) 5.29818 7.29232i 0.241326 0.332156i
\(483\) 31.7650i 1.44536i
\(484\) 8.66700 + 6.77371i 0.393954 + 0.307896i
\(485\) 15.8277 4.01238i 0.718698 0.182193i
\(486\) 3.19098 + 2.31838i 0.144746 + 0.105164i
\(487\) 7.14274 + 2.32082i 0.323668 + 0.105166i 0.466344 0.884603i \(-0.345571\pi\)
−0.142676 + 0.989769i \(0.545571\pi\)
\(488\) −9.21895 + 2.99542i −0.417322 + 0.135596i
\(489\) 22.7905 16.5582i 1.03062 0.748789i
\(490\) 25.9538 31.1784i 1.17247 1.40850i
\(491\) 3.48008 + 10.7106i 0.157054 + 0.483361i 0.998363 0.0571923i \(-0.0182148\pi\)
−0.841310 + 0.540554i \(0.818215\pi\)
\(492\) 7.04767 + 2.28993i 0.317733 + 0.103238i
\(493\) −0.148702 + 0.204671i −0.00669719 + 0.00921790i
\(494\) −4.81281 −0.216539
\(495\) −2.42250 + 1.46829i −0.108883 + 0.0659948i
\(496\) −8.87707 −0.398592
\(497\) 25.9840 35.7640i 1.16554 1.60423i
\(498\) −17.0073 5.52599i −0.762114 0.247626i
\(499\) 8.33753 + 25.6603i 0.373239 + 1.14871i 0.944659 + 0.328054i \(0.106393\pi\)
−0.571420 + 0.820658i \(0.693607\pi\)
\(500\) 10.9627 + 2.19550i 0.490265 + 0.0981857i
\(501\) −4.32760 + 3.14419i −0.193343 + 0.140472i
\(502\) −1.24746 + 0.405323i −0.0556767 + 0.0180905i
\(503\) −30.5818 9.93662i −1.36357 0.443052i −0.466339 0.884606i \(-0.654427\pi\)
−0.897235 + 0.441554i \(0.854427\pi\)
\(504\) −1.54947 1.12576i −0.0690190 0.0501452i
\(505\) 0.121913 + 0.480909i 0.00542504 + 0.0214002i
\(506\) 4.22866 12.2776i 0.187987 0.545806i
\(507\) 12.2125i 0.542375i
\(508\) 8.50112 11.7008i 0.377176 0.519139i
\(509\) −3.64048 + 11.2043i −0.161362 + 0.496620i −0.998750 0.0499888i \(-0.984081\pi\)
0.837388 + 0.546609i \(0.184081\pi\)
\(510\) 0.117978 + 0.187164i 0.00522414 + 0.00828775i
\(511\) 21.8899 15.9039i 0.968352 0.703549i
\(512\) −0.587785 0.809017i −0.0259767 0.0357538i
\(513\) −10.7269 + 3.48537i −0.473603 + 0.153883i
\(514\) 1.37945 4.24551i 0.0608449 0.187261i
\(515\) −1.17540 0.469532i −0.0517945 0.0206901i
\(516\) 5.85410 0.257712
\(517\) −0.516268 + 29.4374i −0.0227054 + 1.29465i
\(518\) 22.8491i 1.00393i
\(519\) 6.71341 + 4.87758i 0.294686 + 0.214102i
\(520\) −5.20992 0.343754i −0.228470 0.0150746i
\(521\) 0.718847 + 2.21238i 0.0314933 + 0.0969263i 0.965568 0.260152i \(-0.0837728\pi\)
−0.934074 + 0.357079i \(0.883773\pi\)
\(522\) −0.928842 1.27844i −0.0406543 0.0559559i
\(523\) −0.901612 1.24096i −0.0394248 0.0542635i 0.788850 0.614586i \(-0.210677\pi\)
−0.828274 + 0.560323i \(0.810677\pi\)
\(524\) −4.73587 14.5755i −0.206888 0.636735i
\(525\) −7.35777 39.8928i −0.321119 1.74107i
\(526\) 11.4711 + 8.33426i 0.500165 + 0.363391i
\(527\) 0.542836i 0.0236463i
\(528\) 3.07768 + 4.39616i 0.133939 + 0.191318i
\(529\) 7.67080 0.333513
\(530\) 1.84303 4.61376i 0.0800563 0.200409i
\(531\) −0.228850 + 0.704328i −0.00993125 + 0.0305652i
\(532\) 9.82918 3.19369i 0.426149 0.138464i
\(533\) 6.28578 + 8.65163i 0.272267 + 0.374744i
\(534\) −7.97214 + 5.79210i −0.344988 + 0.250648i
\(535\) 2.65902 + 4.21836i 0.114959 + 0.182375i
\(536\) −0.771224 + 2.37358i −0.0333118 + 0.102523i
\(537\) 13.7327 18.9014i 0.592608 0.815655i
\(538\) 31.9952i 1.37941i
\(539\) −48.0515 36.2156i −2.06972 1.55992i
\(540\) −11.8609 + 3.00678i −0.510411 + 0.129391i
\(541\) 12.4927 + 9.07650i 0.537104 + 0.390229i 0.823008 0.568029i \(-0.192294\pi\)
−0.285904 + 0.958258i \(0.592294\pi\)
\(542\) 1.00944 + 0.327988i 0.0433593 + 0.0140883i
\(543\) −18.3216 + 5.95305i −0.786255 + 0.255470i
\(544\) −0.0494717 + 0.0359433i −0.00212108 + 0.00154106i
\(545\) −13.5128 11.2485i −0.578826 0.481831i
\(546\) 5.85410 + 18.0171i 0.250532 + 0.771060i
\(547\) 10.1261 + 3.29017i 0.432960 + 0.140677i 0.517385 0.855752i \(-0.326905\pi\)
−0.0844251 + 0.996430i \(0.526905\pi\)
\(548\) −0.649130 + 0.893451i −0.0277295 + 0.0381663i
\(549\) −3.70254 −0.158021
\(550\) 2.46678 16.3986i 0.105184 0.699240i
\(551\) 8.52724 0.363272
\(552\) 3.72363 5.12513i 0.158488 0.218140i
\(553\) 31.7372 + 10.3120i 1.34960 + 0.438513i
\(554\) −2.04979 6.30859i −0.0870871 0.268026i
\(555\) 12.6713 + 10.5479i 0.537866 + 0.447734i
\(556\) 8.01420 5.82265i 0.339878 0.246936i
\(557\) 32.2595 10.4818i 1.36688 0.444126i 0.468545 0.883439i \(-0.344778\pi\)
0.898334 + 0.439313i \(0.144778\pi\)
\(558\) −3.22478 1.04780i −0.136516 0.0443567i
\(559\) 6.83470 + 4.96570i 0.289077 + 0.210027i
\(560\) 10.8683 2.75516i 0.459269 0.116427i
\(561\) 0.268827 0.188201i 0.0113499 0.00794587i
\(562\) 15.6464i 0.660005i
\(563\) 0.789857 1.08714i 0.0332885 0.0458177i −0.792048 0.610458i \(-0.790985\pi\)
0.825337 + 0.564641i \(0.190985\pi\)
\(564\) −4.43854 + 13.6604i −0.186896 + 0.575207i
\(565\) −14.9782 23.7620i −0.630139 0.999674i
\(566\) 18.2033 13.2255i 0.765142 0.555908i
\(567\) 22.7182 + 31.2689i 0.954073 + 1.31317i
\(568\) 8.38481 2.72439i 0.351819 0.114313i
\(569\) 9.70595 29.8718i 0.406894 1.25229i −0.512409 0.858742i \(-0.671247\pi\)
0.919303 0.393550i \(-0.128753\pi\)
\(570\) 2.76638 6.92522i 0.115871 0.290065i
\(571\) 9.25361 0.387252 0.193626 0.981075i \(-0.437975\pi\)
0.193626 + 0.981075i \(0.437975\pi\)
\(572\) −0.135798 + 7.74317i −0.00567801 + 0.323758i
\(573\) 17.0186i 0.710962i
\(574\) −18.5785 13.4981i −0.775451 0.563398i
\(575\) −19.2516 + 3.55073i −0.802845 + 0.148075i
\(576\) −0.118034 0.363271i −0.00491808 0.0151363i
\(577\) 25.4998 + 35.0975i 1.06157 + 1.46113i 0.878327 + 0.478060i \(0.158660\pi\)
0.183244 + 0.983068i \(0.441340\pi\)
\(578\) −9.99015 13.7503i −0.415536 0.571936i
\(579\) −2.43434 7.49214i −0.101168 0.311363i
\(580\) 9.23082 + 0.609057i 0.383289 + 0.0252897i
\(581\) 44.8332 + 32.5732i 1.85999 + 1.35136i
\(582\) 11.8153i 0.489760i
\(583\) −6.96744 2.39973i −0.288562 0.0993865i
\(584\) 5.39616 0.223295
\(585\) −1.85204 0.739823i −0.0765723 0.0305879i
\(586\) −5.62063 + 17.2985i −0.232186 + 0.714595i
\(587\) −3.05524 + 0.992708i −0.126103 + 0.0409734i −0.371389 0.928477i \(-0.621118\pi\)
0.245285 + 0.969451i \(0.421118\pi\)
\(588\) −17.2542 23.7484i −0.711552 0.979367i
\(589\) 14.8026 10.7547i 0.609929 0.443139i
\(590\) −2.31184 3.66758i −0.0951768 0.150992i
\(591\) −7.98801 + 24.5846i −0.328583 + 1.01127i
\(592\) −2.67847 + 3.68660i −0.110084 + 0.151518i
\(593\) 0.0315027i 0.00129366i 1.00000 0.000646829i \(0.000205892\pi\)
−1.00000 0.000646829i \(0.999794\pi\)
\(594\) 5.30482 + 17.3564i 0.217660 + 0.712143i
\(595\) −0.168479 0.664600i −0.00690696 0.0272460i
\(596\) −7.11314 5.16800i −0.291366 0.211689i
\(597\) −25.7103 8.35379i −1.05225 0.341898i
\(598\) 8.69471 2.82508i 0.355553 0.115526i
\(599\) −8.50993 + 6.18283i −0.347706 + 0.252623i −0.747906 0.663804i \(-0.768941\pi\)
0.400200 + 0.916428i \(0.368941\pi\)
\(600\) 3.48927 7.29903i 0.142449 0.297982i
\(601\) 7.45305 + 22.9381i 0.304016 + 0.935665i 0.980043 + 0.198788i \(0.0637005\pi\)
−0.676026 + 0.736877i \(0.736300\pi\)
\(602\) −17.2536 5.60604i −0.703205 0.228485i
\(603\) −0.560327 + 0.771224i −0.0228183 + 0.0314067i
\(604\) −21.5903 −0.878497
\(605\) −24.4715 2.47901i −0.994908 0.100786i
\(606\) 0.358997 0.0145833
\(607\) −1.46340 + 2.01420i −0.0593975 + 0.0817537i −0.837682 0.546158i \(-0.816090\pi\)
0.778285 + 0.627911i \(0.216090\pi\)
\(608\) 1.96027 + 0.636930i 0.0794995 + 0.0258309i
\(609\) −10.3722 31.9223i −0.420302 1.29356i
\(610\) 13.8671 16.6587i 0.561464 0.674489i
\(611\) −16.7694 + 12.1836i −0.678415 + 0.492898i
\(612\) −0.0222142 + 0.00721782i −0.000897955 + 0.000291763i
\(613\) −35.7338 11.6106i −1.44328 0.468949i −0.520359 0.853948i \(-0.674202\pi\)
−0.922917 + 0.384999i \(0.874202\pi\)
\(614\) 10.0172 + 7.27794i 0.404262 + 0.293714i
\(615\) −16.0620 + 4.07178i −0.647682 + 0.164190i
\(616\) −4.86089 15.9039i −0.195851 0.640788i
\(617\) 45.5803i 1.83499i 0.397744 + 0.917496i \(0.369793\pi\)
−0.397744 + 0.917496i \(0.630207\pi\)
\(618\) −0.538341 + 0.740963i −0.0216553 + 0.0298059i
\(619\) −1.77382 + 5.45924i −0.0712957 + 0.219425i −0.980355 0.197241i \(-0.936802\pi\)
0.909059 + 0.416667i \(0.136802\pi\)
\(620\) 16.7921 10.5848i 0.674386 0.425096i
\(621\) 17.3330 12.5932i 0.695550 0.505347i
\(622\) −5.53104 7.61283i −0.221775 0.305246i
\(623\) 29.0427 9.43655i 1.16357 0.378067i
\(624\) −1.16751 + 3.59321i −0.0467376 + 0.143844i
\(625\) −23.3551 + 8.91853i −0.934203 + 0.356741i
\(626\) 15.2317 0.608781
\(627\) −10.4581 3.60197i −0.417655 0.143849i
\(628\) 3.41472i 0.136262i
\(629\) 0.225437 + 0.163789i 0.00898875 + 0.00653071i
\(630\) 4.27334 + 0.281959i 0.170254 + 0.0112335i
\(631\) 3.70103 + 11.3906i 0.147336 + 0.453453i 0.997304 0.0733811i \(-0.0233790\pi\)
−0.849968 + 0.526834i \(0.823379\pi\)
\(632\) 3.91183 + 5.38417i 0.155604 + 0.214171i
\(633\) 14.9753 + 20.6118i 0.595216 + 0.819245i
\(634\) 4.15834 + 12.7981i 0.165149 + 0.508276i
\(635\) −2.12920 + 32.2700i −0.0844948 + 1.28060i
\(636\) −2.90847 2.11313i −0.115328 0.0837909i
\(637\) 42.3621i 1.67845i
\(638\) 0.240605 13.7192i 0.00952563 0.543148i
\(639\) 3.36753 0.133217
\(640\) 2.07652 + 0.829496i 0.0820817 + 0.0327887i
\(641\) −10.8526 + 33.4007i −0.428650 + 1.31925i 0.470805 + 0.882237i \(0.343964\pi\)
−0.899455 + 0.437013i \(0.856036\pi\)
\(642\) 3.43164 1.11501i 0.135436 0.0440059i
\(643\) −20.9529 28.8392i −0.826302 1.13731i −0.988600 0.150565i \(-0.951891\pi\)
0.162298 0.986742i \(-0.448109\pi\)
\(644\) −15.8825 + 11.5393i −0.625858 + 0.454712i
\(645\) −11.0738 + 6.98028i −0.436029 + 0.274848i
\(646\) 0.0389485 0.119871i 0.00153241 0.00471627i
\(647\) 11.8476 16.3068i 0.465778 0.641088i −0.509917 0.860224i \(-0.670324\pi\)
0.975694 + 0.219136i \(0.0703238\pi\)
\(648\) 7.70820i 0.302807i
\(649\) −5.26781 + 3.68791i −0.206780 + 0.144763i
\(650\) 10.2651 5.56192i 0.402630 0.218156i
\(651\) −58.2661 42.3328i −2.28363 1.65915i
\(652\) −16.5582 5.38010i −0.648470 0.210701i
\(653\) 23.1905 7.53504i 0.907513 0.294869i 0.182178 0.983266i \(-0.441685\pi\)
0.725334 + 0.688397i \(0.241685\pi\)
\(654\) −10.2926 + 7.47804i −0.402474 + 0.292414i
\(655\) 26.3380 + 21.9245i 1.02911 + 0.856660i
\(656\) −1.41525 4.35570i −0.0552563 0.170061i
\(657\) 1.96027 + 0.636930i 0.0764774 + 0.0248490i
\(658\) 26.1631 36.0105i 1.01994 1.40383i
\(659\) 6.98788 0.272209 0.136104 0.990694i \(-0.456542\pi\)
0.136104 + 0.990694i \(0.456542\pi\)
\(660\) −11.0637 4.64613i −0.430654 0.180851i
\(661\) −3.61827 −0.140735 −0.0703673 0.997521i \(-0.522417\pi\)
−0.0703673 + 0.997521i \(0.522417\pi\)
\(662\) −2.24673 + 3.09235i −0.0873215 + 0.120188i
\(663\) 0.219726 + 0.0713934i 0.00853346 + 0.00277269i
\(664\) 3.41525 + 10.5111i 0.132537 + 0.407908i
\(665\) −14.7850 + 17.7613i −0.573339 + 0.688755i
\(666\) −1.40815 + 1.02308i −0.0545649 + 0.0396437i
\(667\) −15.4051 + 5.00542i −0.596488 + 0.193811i
\(668\) 3.14419 + 1.02161i 0.121652 + 0.0395272i
\(669\) 19.0536 + 13.8432i 0.736653 + 0.535210i
\(670\) −1.37133 5.40952i −0.0529793 0.208988i
\(671\) −25.6740 19.3501i −0.991133 0.747001i
\(672\) 8.11314i 0.312971i
\(673\) −4.68377 + 6.44665i −0.180546 + 0.248500i −0.889692 0.456562i \(-0.849081\pi\)
0.709146 + 0.705062i \(0.249081\pi\)
\(674\) 2.92538 9.00338i 0.112681 0.346797i
\(675\) 18.8511 19.8303i 0.725580 0.763270i
\(676\) 6.10624 4.43644i 0.234855 0.170632i
\(677\) −8.48443 11.6778i −0.326083 0.448815i 0.614229 0.789128i \(-0.289467\pi\)
−0.940312 + 0.340313i \(0.889467\pi\)
\(678\) −19.3304 + 6.28084i −0.742381 + 0.241214i
\(679\) −11.3146 + 34.8229i −0.434216 + 1.33638i
\(680\) 0.0507240 0.126980i 0.00194518 0.00486946i
\(681\) −15.9159 −0.609898
\(682\) −16.8852 24.1188i −0.646567 0.923557i
\(683\) 29.6723i 1.13538i 0.823242 + 0.567690i \(0.192163\pi\)
−0.823242 + 0.567690i \(0.807837\pi\)
\(684\) 0.636930 + 0.462757i 0.0243536 + 0.0176940i
\(685\) 0.162582 2.46408i 0.00621194 0.0941476i
\(686\) 17.2645 + 53.1345i 0.659160 + 2.02869i
\(687\) −14.7869 20.3524i −0.564156 0.776493i
\(688\) −2.12663 2.92705i −0.0810769 0.111593i
\(689\) −1.60321 4.93417i −0.0610774 0.187977i
\(690\) −0.932624 + 14.1348i −0.0355044 + 0.538102i
\(691\) −26.1812 19.0218i −0.995980 0.723622i −0.0347577 0.999396i \(-0.511066\pi\)
−0.961223 + 0.275774i \(0.911066\pi\)
\(692\) 5.12859i 0.194960i
\(693\) 0.111386 6.35120i 0.00423121 0.241262i
\(694\) 16.5424 0.627943
\(695\) −8.21706 + 20.5702i −0.311691 + 0.780272i
\(696\) 2.06856 6.36638i 0.0784087 0.241317i
\(697\) −0.266353 + 0.0865432i −0.0100888 + 0.00327806i
\(698\) 17.1791 + 23.6451i 0.650240 + 0.894979i
\(699\) 33.8992 24.6292i 1.28219 0.931562i
\(700\) −17.2736 + 18.1708i −0.652879 + 0.686792i
\(701\) 5.86089 18.0380i 0.221363 0.681284i −0.777278 0.629157i \(-0.783400\pi\)
0.998640 0.0521266i \(-0.0165999\pi\)
\(702\) −7.51043 + 10.3372i −0.283463 + 0.390153i
\(703\) 9.39242i 0.354242i
\(704\) 1.08005 3.13584i 0.0407058 0.118186i
\(705\) −7.89228 31.1328i −0.297241 1.17253i
\(706\) −22.5878 16.4110i −0.850103 0.617636i
\(707\) −1.05806 0.343785i −0.0397925 0.0129294i
\(708\) −2.98358 + 0.969425i −0.112130 + 0.0364332i
\(709\) 6.78617 4.93044i 0.254860 0.185167i −0.453018 0.891501i \(-0.649653\pi\)
0.707878 + 0.706335i \(0.249653\pi\)
\(710\) −12.6124 + 15.1514i −0.473335 + 0.568620i
\(711\) 0.785540 + 2.41764i 0.0294600 + 0.0906687i
\(712\) 5.79210 + 1.88197i 0.217068 + 0.0705297i
\(713\) −20.4290 + 28.1182i −0.765074 + 1.05303i
\(714\) −0.496121 −0.0185669
\(715\) −8.97588 14.8091i −0.335679 0.553828i
\(716\) −14.4394 −0.539625
\(717\) −19.0173 + 26.1751i −0.710216 + 0.977528i
\(718\) −16.1815 5.25768i −0.603887 0.196215i
\(719\) −2.33218 7.17771i −0.0869756 0.267684i 0.898104 0.439783i \(-0.144945\pi\)
−0.985079 + 0.172100i \(0.944945\pi\)
\(720\) 0.656431 + 0.546432i 0.0244638 + 0.0203643i
\(721\) 2.29620 1.66829i 0.0855150 0.0621303i
\(722\) 14.0297 4.55851i 0.522130 0.169650i
\(723\) 13.8708 + 4.50690i 0.515861 + 0.167614i
\(724\) 9.63223 + 6.99822i 0.357979 + 0.260087i
\(725\) −18.1875 + 9.85449i −0.675466 + 0.365987i
\(726\) −6.09017 + 16.7240i −0.226027 + 0.620686i
\(727\) 24.2826i 0.900593i −0.892879 0.450297i \(-0.851318\pi\)
0.892879 0.450297i \(-0.148682\pi\)
\(728\) 6.88191 9.47214i 0.255061 0.351061i
\(729\) −9.11803 + 28.0624i −0.337705 + 1.03935i
\(730\) −10.2075 + 6.43425i −0.377797 + 0.238142i
\(731\) −0.178990 + 0.130044i −0.00662019 + 0.00480985i
\(732\) −9.21895 12.6888i −0.340742 0.468992i
\(733\) −20.3541 + 6.61345i −0.751796 + 0.244273i −0.659754 0.751482i \(-0.729340\pi\)
−0.0920424 + 0.995755i \(0.529340\pi\)
\(734\) 9.09719 27.9983i 0.335784 1.03344i
\(735\) 60.9555 + 24.3495i 2.24838 + 0.898147i
\(736\) −3.91525 −0.144318
\(737\) −7.91593 + 2.41943i −0.291587 + 0.0891207i
\(738\) 1.74935i 0.0643944i
\(739\) 28.4419 + 20.6642i 1.04625 + 0.760147i 0.971496 0.237055i \(-0.0761823\pi\)
0.0747558 + 0.997202i \(0.476182\pi\)
\(740\) 0.670853 10.1674i 0.0246610 0.373761i
\(741\) −2.40640 7.40615i −0.0884015 0.272072i
\(742\) 6.54846 + 9.01318i 0.240401 + 0.330884i
\(743\) 20.0435 + 27.5875i 0.735324 + 1.01209i 0.998874 + 0.0474407i \(0.0151065\pi\)
−0.263550 + 0.964646i \(0.584893\pi\)
\(744\) −4.43854 13.6604i −0.162725 0.500815i
\(745\) 19.6176 + 1.29438i 0.718732 + 0.0474225i
\(746\) −13.0044 9.44825i −0.476125 0.345925i
\(747\) 4.22148i 0.154456i
\(748\) −0.191758 0.0660453i −0.00701136 0.00241485i
\(749\) −11.1817 −0.408572
\(750\) 2.10280 + 17.9675i 0.0767834 + 0.656082i
\(751\) −11.0690 + 34.0669i −0.403914 + 1.24312i 0.517884 + 0.855451i \(0.326720\pi\)
−0.921799 + 0.387669i \(0.873280\pi\)
\(752\) 8.44260 2.74317i 0.307870 0.100033i
\(753\) −1.24746 1.71698i −0.0454599 0.0625701i
\(754\) 7.81529 5.67814i 0.284616 0.206786i
\(755\) 40.8408 25.7437i 1.48635 0.936911i
\(756\) 8.47892 26.0954i 0.308375 0.949082i
\(757\) −14.2408 + 19.6008i −0.517592 + 0.712404i −0.985176 0.171544i \(-0.945124\pi\)
0.467584 + 0.883948i \(0.345124\pi\)
\(758\) 18.1230i 0.658256i
\(759\) 21.0076 + 0.368428i 0.762528 + 0.0133731i
\(760\) −4.46756 + 1.13254i −0.162055 + 0.0410817i
\(761\) −8.62191 6.26419i −0.312544 0.227077i 0.420443 0.907319i \(-0.361875\pi\)
−0.732987 + 0.680242i \(0.761875\pi\)
\(762\) 22.2562 + 7.23149i 0.806258 + 0.261969i
\(763\) 37.4964 12.1833i 1.35746 0.441065i
\(764\) 8.50930 6.18237i 0.307856 0.223670i
\(765\) 0.0334145 0.0401410i 0.00120810 0.00145130i
\(766\) −4.08276 12.5654i −0.147516 0.454008i
\(767\) −4.30566 1.39899i −0.155468 0.0505147i
\(768\) 0.951057 1.30902i 0.0343183 0.0472351i
\(769\) −25.8297 −0.931444 −0.465722 0.884931i \(-0.654205\pi\)
−0.465722 + 0.884931i \(0.654205\pi\)
\(770\) 28.1584 + 24.2883i 1.01476 + 0.875289i
\(771\) 7.22289 0.260126
\(772\) −2.86174 + 3.93885i −0.102996 + 0.141762i
\(773\) −11.4679 3.72614i −0.412471 0.134020i 0.0954286 0.995436i \(-0.469578\pi\)
−0.507899 + 0.861416i \(0.669578\pi\)
\(774\) −0.427051 1.31433i −0.0153500 0.0472425i
\(775\) −19.1433 + 40.0449i −0.687647 + 1.43846i
\(776\) −5.90765 + 4.29216i −0.212072 + 0.154079i
\(777\) −35.1612 + 11.4246i −1.26140 + 0.409854i
\(778\) 25.2263 + 8.19653i 0.904407 + 0.293860i
\(779\) 7.63693 + 5.54855i 0.273621 + 0.198798i
\(780\) −2.07597 8.18911i −0.0743318 0.293217i
\(781\) 23.3510 + 17.5992i 0.835563 + 0.629750i
\(782\) 0.239419i 0.00856161i
\(783\) 13.3068 18.3153i 0.475547 0.654534i
\(784\) −5.60624 + 17.2542i −0.200223 + 0.616222i
\(785\) −4.07163 6.45938i −0.145323 0.230545i
\(786\) 20.0615 14.5755i 0.715569 0.519892i
\(787\) −10.6725 14.6895i −0.380435 0.523624i 0.575265 0.817967i \(-0.304899\pi\)
−0.955700 + 0.294343i \(0.904899\pi\)
\(788\) 15.1941 4.93686i 0.541267 0.175868i
\(789\) −7.08954 + 21.8194i −0.252394 + 0.776790i
\(790\) −13.8197 5.52046i −0.491681 0.196409i
\(791\) 62.9867 2.23955
\(792\) 0.762486 1.01168i 0.0270938 0.0359484i
\(793\) 22.6342i 0.803762i
\(794\) −24.5331 17.8243i −0.870648 0.632562i
\(795\) 8.02137 + 0.529256i 0.284489 + 0.0187708i
\(796\) 5.16292 + 15.8898i 0.182995 + 0.563201i
\(797\) 0.946725 + 1.30306i 0.0335347 + 0.0461566i 0.825455 0.564468i \(-0.190919\pi\)
−0.791920 + 0.610624i \(0.790919\pi\)
\(798\) 9.82918 + 13.5287i 0.347949 + 0.478911i
\(799\) −0.167746 0.516268i −0.00593441 0.0182642i
\(800\) −4.91707 + 0.906896i −0.173845 + 0.0320636i
\(801\) 1.88197 + 1.36733i 0.0664960 + 0.0483122i
\(802\) 19.4762i 0.687727i
\(803\) 10.2641 + 14.6612i 0.362213 + 0.517384i
\(804\) −4.03818 −0.142416
\(805\) 16.2845 40.7659i 0.573954 1.43681i
\(806\) 6.40532 19.7136i 0.225618 0.694380i
\(807\) −49.2356 + 15.9976i −1.73318 + 0.563143i
\(808\) −0.130413 0.179498i −0.00458792 0.00631473i
\(809\) 20.7273 15.0593i 0.728733 0.529455i −0.160429 0.987047i \(-0.551288\pi\)
0.889162 + 0.457592i \(0.151288\pi\)
\(810\) −9.19107 14.5810i −0.322941 0.512325i
\(811\) 13.5506 41.7045i 0.475827 1.46444i −0.369012 0.929424i \(-0.620304\pi\)
0.844839 0.535020i \(-0.179696\pi\)
\(812\) −12.1932 + 16.7825i −0.427898 + 0.588951i
\(813\) 1.71737i 0.0602306i
\(814\) −15.1111 0.265017i −0.529646 0.00928883i
\(815\) 37.7370 9.56650i 1.32187 0.335100i
\(816\) −0.0800469 0.0581575i −0.00280220 0.00203592i
\(817\) 7.09233 + 2.30444i 0.248129 + 0.0806220i
\(818\) −26.9437 + 8.75453i −0.942063 + 0.306095i
\(819\) 3.61803 2.62866i 0.126424 0.0918527i
\(820\) 7.87075 + 6.55183i 0.274859 + 0.228800i
\(821\) −5.43938 16.7407i −0.189836 0.584254i 0.810163 0.586205i \(-0.199379\pi\)
−0.999998 + 0.00195152i \(0.999379\pi\)
\(822\) −1.69944 0.552183i −0.0592749 0.0192596i
\(823\) −7.43854 + 10.2383i −0.259291 + 0.356884i −0.918738 0.394867i \(-0.870791\pi\)
0.659447 + 0.751751i \(0.270791\pi\)
\(824\) 0.566045 0.0197191
\(825\) 26.4683 4.40333i 0.921507 0.153304i
\(826\) 9.72177 0.338264
\(827\) −5.19856 + 7.15520i −0.180772 + 0.248811i −0.889780 0.456389i \(-0.849143\pi\)
0.709009 + 0.705200i \(0.249143\pi\)
\(828\) −1.42230 0.462133i −0.0494283 0.0160602i
\(829\) −11.6571 35.8767i −0.404866 1.24605i −0.921007 0.389546i \(-0.872632\pi\)
0.516141 0.856504i \(-0.327368\pi\)
\(830\) −18.9935 15.8107i −0.659274 0.548798i
\(831\) 8.68303 6.30859i 0.301211 0.218843i
\(832\) 2.22073 0.721558i 0.0769899 0.0250155i
\(833\) 1.05510 + 0.342823i 0.0365571 + 0.0118781i
\(834\) 12.9672 + 9.42125i 0.449019 + 0.326231i
\(835\) −7.16576 + 1.81655i −0.247981 + 0.0628643i
\(836\) 1.99813 + 6.53752i 0.0691068 + 0.226105i
\(837\) 48.5765i 1.67905i
\(838\) 9.10044 12.5257i 0.314369 0.432692i
\(839\) 11.8934 36.6041i 0.410606 1.26372i −0.505517 0.862817i \(-0.668698\pi\)
0.916123 0.400898i \(-0.131302\pi\)
\(840\) 9.67390 + 15.3470i 0.333781 + 0.529522i
\(841\) 9.61452 6.98536i 0.331535 0.240874i
\(842\) −12.6293 17.3828i −0.435236 0.599051i
\(843\) −24.0774 + 7.82321i −0.829269 + 0.269446i
\(844\) 4.86578 14.9753i 0.167487 0.515472i
\(845\) −6.26080 + 15.6730i −0.215378 + 0.539168i
\(846\) 3.39074 0.116576
\(847\) 33.9647 43.4580i 1.16704 1.49324i
\(848\) 2.22187i 0.0762994i
\(849\) 29.4536 + 21.3993i 1.01084 + 0.734421i
\(850\) 0.0554570 + 0.300680i 0.00190216 + 0.0103133i
\(851\) 5.51328 + 16.9681i 0.188993 + 0.581660i
\(852\) 8.38481 + 11.5407i 0.287259 + 0.395378i
\(853\) −29.9122 41.1706i −1.02417 1.40965i −0.909237 0.416280i \(-0.863334\pi\)
−0.114936 0.993373i \(-0.536666\pi\)
\(854\) 15.0196 + 46.2256i 0.513961 + 1.58181i
\(855\) −1.75661 0.115903i −0.0600749 0.00396379i
\(856\) −1.80412 1.31077i −0.0616636 0.0448012i
\(857\) 11.5197i 0.393506i −0.980453 0.196753i \(-0.936960\pi\)
0.980453 0.196753i \(-0.0630397\pi\)
\(858\) −11.9834 + 3.66261i −0.409107 + 0.125039i
\(859\) −23.9497 −0.817153 −0.408577 0.912724i \(-0.633975\pi\)
−0.408577 + 0.912724i \(0.633975\pi\)
\(860\) 7.51292 + 3.00114i 0.256188 + 0.102338i
\(861\) 11.4821 35.3384i 0.391310 1.20433i
\(862\) −25.1450 + 8.17010i −0.856441 + 0.278275i
\(863\) 23.5170 + 32.3684i 0.800530 + 1.10183i 0.992716 + 0.120476i \(0.0384421\pi\)
−0.192187 + 0.981358i \(0.561558\pi\)
\(864\) 4.42705 3.21644i 0.150611 0.109426i
\(865\) 6.11520 + 9.70137i 0.207923 + 0.329856i
\(866\) −10.1611 + 31.2725i −0.345287 + 1.06268i
\(867\) 16.1644 22.2484i 0.548972 0.755595i
\(868\) 44.5114i 1.51081i
\(869\) −7.18793 + 20.8696i −0.243834 + 0.707954i
\(870\) 3.67817 + 14.5093i 0.124702 + 0.491911i
\(871\) −4.71460 3.42536i −0.159748 0.116064i
\(872\) 7.47804 + 2.42976i 0.253238 + 0.0822821i
\(873\) −2.65270 + 0.861914i −0.0897802 + 0.0291714i
\(874\) 6.52871 4.74338i 0.220837 0.160447i
\(875\) 11.0087 54.9689i 0.372161 1.85829i
\(876\) 2.69808 + 8.30384i 0.0911597 + 0.280561i
\(877\) 24.7104 + 8.02891i 0.834413 + 0.271117i 0.694903 0.719104i \(-0.255447\pi\)
0.139510 + 0.990221i \(0.455447\pi\)
\(878\) 7.15897 9.85347i 0.241603 0.332539i
\(879\) −29.4300 −0.992648
\(880\) 1.69605 + 7.21965i 0.0571740 + 0.243374i
\(881\) 25.1372 0.846893 0.423446 0.905921i \(-0.360820\pi\)
0.423446 + 0.905921i \(0.360820\pi\)
\(882\) −4.07317 + 5.60624i −0.137151 + 0.188772i
\(883\) 41.3431 + 13.4332i 1.39131 + 0.452063i 0.906369 0.422486i \(-0.138843\pi\)
0.484937 + 0.874549i \(0.338843\pi\)
\(884\) −0.0441236 0.135798i −0.00148404 0.00456739i
\(885\) 4.48790 5.39134i 0.150859 0.181228i
\(886\) −13.4370 + 9.76254i −0.451424 + 0.327979i
\(887\) −27.2078 + 8.84036i −0.913549 + 0.296830i −0.727818 0.685770i \(-0.759465\pi\)
−0.185731 + 0.982601i \(0.559465\pi\)
\(888\) −7.01232 2.27844i −0.235318 0.0764595i
\(889\) −58.6701 42.6263i −1.96773 1.42964i
\(890\) −13.2005 + 3.34638i −0.442481 + 0.112171i
\(891\) −20.9430 + 14.6619i −0.701617 + 0.491191i
\(892\) 14.5556i 0.487358i
\(893\) −10.7547 + 14.8026i −0.359892 + 0.495349i
\(894\) 4.39616 13.5300i 0.147030 0.452511i
\(895\) 27.3139 17.2171i 0.913002 0.575506i
\(896\) −4.05657 + 2.94727i −0.135520 + 0.0984614i
\(897\) 8.69471 + 11.9672i 0.290308 + 0.399575i
\(898\) −5.10113 + 1.65746i −0.170227 + 0.0553100i
\(899\) −11.3488 + 34.9281i −0.378504 + 1.16492i
\(900\) −1.89327 0.250932i −0.0631091 0.00836439i
\(901\) 0.135868 0.00452643
\(902\) 9.14237 12.1302i 0.304407 0.403893i
\(903\) 29.3536i 0.976827i
\(904\) 10.1626 + 7.38357i 0.338003 + 0.245574i
\(905\) −26.5651 1.75278i −0.883053 0.0582645i
\(906\) −10.7952 33.2241i −0.358645 1.10380i
\(907\) −28.0438 38.5990i −0.931179 1.28166i −0.959398 0.282056i \(-0.908983\pi\)
0.0282187 0.999602i \(-0.491017\pi\)
\(908\) 5.78178 + 7.95794i 0.191875 + 0.264094i
\(909\) −0.0261885 0.0805998i −0.000868617 0.00267333i
\(910\) −1.72365 + 26.1235i −0.0571385 + 0.865987i
\(911\) −40.3003 29.2799i −1.33521 0.970085i −0.999606 0.0280809i \(-0.991060\pi\)
−0.335602 0.942004i \(-0.608940\pi\)
\(912\) 3.33501i 0.110433i
\(913\) −22.0621 + 29.2724i −0.730150 + 0.968775i
\(914\) −3.61237 −0.119487
\(915\) 32.5686 + 13.0100i 1.07668 + 0.430097i
\(916\) −4.80456 + 14.7869i −0.158747 + 0.488573i
\(917\) −73.0845 + 23.7466i −2.41346 + 0.784182i
\(918\) −0.196687 0.270716i −0.00649162 0.00893495i
\(919\) −34.7058 + 25.2153i −1.14484 + 0.831775i −0.987786 0.155815i \(-0.950199\pi\)
−0.157053 + 0.987590i \(0.550199\pi\)
\(920\) 7.40619 4.66845i 0.244175 0.153914i
\(921\) −6.19098 + 19.0539i −0.204000 + 0.627847i
\(922\) −23.9008 + 32.8967i −0.787132 + 1.08339i
\(923\) 20.5862i 0.677602i
\(924\) 22.0432 15.4321i 0.725169 0.507679i
\(925\) 10.8543 + 20.0328i 0.356889 + 0.658674i
\(926\) −1.71415 1.24540i −0.0563303 0.0409264i
\(927\) 0.205628 + 0.0668126i 0.00675371 + 0.00219441i
\(928\) −3.93464 + 1.27844i −0.129161 + 0.0419669i
\(929\) −3.20719 + 2.33016i −0.105224 + 0.0764500i −0.639153 0.769079i \(-0.720715\pi\)
0.533929 + 0.845529i \(0.320715\pi\)
\(930\) 24.6844 + 20.5480i 0.809432 + 0.673794i
\(931\) −11.5553 35.5635i −0.378709 1.16555i
\(932\) −24.6292 8.00252i −0.806757 0.262131i
\(933\) 8.94941 12.3178i 0.292991 0.403267i
\(934\) −13.7549 −0.450075
\(935\) 0.441484 0.103714i 0.0144381 0.00339182i
\(936\) 0.891895 0.0291525
\(937\) −1.24563 + 1.71446i −0.0406929 + 0.0560090i −0.828879 0.559429i \(-0.811021\pi\)
0.788186 + 0.615437i \(0.211021\pi\)
\(938\) 11.9016 + 3.86707i 0.388601 + 0.126264i
\(939\) 7.61585 + 23.4392i 0.248534 + 0.764909i
\(940\) −12.6993 + 15.2558i −0.414207 + 0.497589i
\(941\) −4.08118 + 2.96515i −0.133043 + 0.0966612i −0.652316 0.757947i \(-0.726203\pi\)
0.519274 + 0.854608i \(0.326203\pi\)
\(942\) −5.25472 + 1.70736i −0.171208 + 0.0556289i
\(943\) −17.0537 5.54107i −0.555344 0.180442i
\(944\) 1.56856 + 1.13963i 0.0510524 + 0.0370917i
\(945\) 15.0766 + 59.4728i 0.490442 + 1.93465i
\(946\) 3.90765 11.3456i 0.127049 0.368877i
\(947\) 0.986192i 0.0320470i −0.999872 0.0160235i \(-0.994899\pi\)
0.999872 0.0160235i \(-0.00510065\pi\)
\(948\) −6.32947 + 8.71177i −0.205572 + 0.282945i
\(949\) −3.89364 + 11.9834i −0.126393 + 0.388998i
\(950\) 7.10052 7.46935i 0.230371 0.242338i
\(951\) −17.6150 + 12.7981i −0.571206 + 0.415006i
\(952\) 0.180227 + 0.248061i 0.00584118 + 0.00803969i
\(953\) 21.8386 7.09580i 0.707422 0.229855i 0.0668608 0.997762i \(-0.478702\pi\)
0.640562 + 0.767907i \(0.278702\pi\)
\(954\) −0.262256 + 0.807142i −0.00849087 + 0.0261322i
\(955\) −8.72470 + 21.8410i −0.282325 + 0.706758i
\(956\) 19.9960 0.646718
\(957\) 21.2320 6.48934i 0.686331 0.209770i
\(958\) 31.4107i 1.01484i
\(959\) 4.47994 + 3.25486i 0.144665 + 0.105105i
\(960\) −0.238203 + 3.61018i −0.00768796 + 0.116518i
\(961\) 14.7718 + 45.4628i 0.476508 + 1.46654i
\(962\) −6.25426 8.60824i −0.201645 0.277541i
\(963\) −0.500670 0.689113i −0.0161339 0.0222064i
\(964\) −2.78542 8.57264i −0.0897123 0.276106i
\(965\) 0.716756 10.8631i 0.0230732 0.349695i
\(966\) −25.6984 18.6710i −0.826833 0.600729i
\(967\) 20.1267i 0.647231i 0.946189 + 0.323616i \(0.104898\pi\)
−0.946189 + 0.323616i \(0.895102\pi\)
\(968\) 10.5744 3.03026i 0.339873 0.0973963i
\(969\) 0.203937 0.00655141
\(970\) 6.05719 15.1633i 0.194485 0.486863i
\(971\) −6.77852 + 20.8621i −0.217533 + 0.669498i 0.781431 + 0.623991i \(0.214490\pi\)
−0.998964 + 0.0455060i \(0.985510\pi\)
\(972\) 3.75123 1.21885i 0.120321 0.0390945i
\(973\) −29.1959 40.1847i −0.935978 1.28826i
\(974\) 6.07597 4.41445i 0.194687 0.141448i
\(975\) 13.6915 + 13.0154i 0.438477 + 0.416826i
\(976\) −2.99542 + 9.21895i −0.0958810 + 0.295091i
\(977\) 34.7133 47.7788i 1.11058 1.52858i 0.290015 0.957022i \(-0.406340\pi\)
0.820562 0.571557i \(-0.193660\pi\)
\(978\) 28.1706i 0.900795i
\(979\) 5.90396 + 19.3167i 0.188691 + 0.617365i
\(980\) −9.96860 39.3232i −0.318435 1.25613i
\(981\) 2.42976 + 1.76533i 0.0775763 + 0.0563625i
\(982\) 10.7106 + 3.48008i 0.341788 + 0.111054i
\(983\) 45.9751 14.9382i 1.46638 0.476455i 0.536367 0.843985i \(-0.319796\pi\)
0.930012 + 0.367530i \(0.119796\pi\)
\(984\) 5.99511 4.35570i 0.191117 0.138855i
\(985\) −22.8549 + 27.4557i −0.728219 + 0.874813i
\(986\) 0.0781772 + 0.240605i 0.00248967 + 0.00766241i
\(987\) 68.4960 + 22.2557i 2.18025 + 0.708406i
\(988\) −2.82890 + 3.89364i −0.0899992 + 0.123873i
\(989\) −14.1655 −0.450437
\(990\) −0.236037 + 2.82288i −0.00750174 + 0.0897172i
\(991\) −55.0154 −1.74762 −0.873811 0.486266i \(-0.838359\pi\)
−0.873811 + 0.486266i \(0.838359\pi\)
\(992\) −5.21781 + 7.18170i −0.165666 + 0.228019i
\(993\) −5.88201 1.91118i −0.186660 0.0606495i
\(994\) −13.6606 42.0431i −0.433289 1.33353i
\(995\) −28.7130 23.9015i −0.910262 0.757728i
\(996\) −14.4672 + 10.5111i −0.458412 + 0.333056i
\(997\) 21.8457 7.09810i 0.691861 0.224799i 0.0580799 0.998312i \(-0.481502\pi\)
0.633781 + 0.773513i \(0.281502\pi\)
\(998\) 25.6603 + 8.33753i 0.812262 + 0.263920i
\(999\) −20.1736 14.6569i −0.638263 0.463725i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 110.2.j.b.59.4 yes 16
3.2 odd 2 990.2.ba.h.829.1 16
4.3 odd 2 880.2.cd.b.609.2 16
5.2 odd 4 550.2.h.n.301.1 8
5.3 odd 4 550.2.h.j.301.2 8
5.4 even 2 inner 110.2.j.b.59.2 16
11.3 even 5 inner 110.2.j.b.69.2 yes 16
11.5 even 5 1210.2.b.k.969.7 8
11.6 odd 10 1210.2.b.l.969.3 8
15.14 odd 2 990.2.ba.h.829.3 16
20.19 odd 2 880.2.cd.b.609.4 16
33.14 odd 10 990.2.ba.h.289.3 16
44.3 odd 10 880.2.cd.b.289.4 16
55.3 odd 20 550.2.h.j.201.2 8
55.14 even 10 inner 110.2.j.b.69.4 yes 16
55.17 even 20 6050.2.a.dl.1.4 4
55.27 odd 20 6050.2.a.dd.1.3 4
55.28 even 20 6050.2.a.da.1.1 4
55.38 odd 20 6050.2.a.di.1.2 4
55.39 odd 10 1210.2.b.l.969.5 8
55.47 odd 20 550.2.h.n.201.1 8
55.49 even 10 1210.2.b.k.969.1 8
165.14 odd 10 990.2.ba.h.289.1 16
220.179 odd 10 880.2.cd.b.289.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.j.b.59.2 16 5.4 even 2 inner
110.2.j.b.59.4 yes 16 1.1 even 1 trivial
110.2.j.b.69.2 yes 16 11.3 even 5 inner
110.2.j.b.69.4 yes 16 55.14 even 10 inner
550.2.h.j.201.2 8 55.3 odd 20
550.2.h.j.301.2 8 5.3 odd 4
550.2.h.n.201.1 8 55.47 odd 20
550.2.h.n.301.1 8 5.2 odd 4
880.2.cd.b.289.2 16 220.179 odd 10
880.2.cd.b.289.4 16 44.3 odd 10
880.2.cd.b.609.2 16 4.3 odd 2
880.2.cd.b.609.4 16 20.19 odd 2
990.2.ba.h.289.1 16 165.14 odd 10
990.2.ba.h.289.3 16 33.14 odd 10
990.2.ba.h.829.1 16 3.2 odd 2
990.2.ba.h.829.3 16 15.14 odd 2
1210.2.b.k.969.1 8 55.49 even 10
1210.2.b.k.969.7 8 11.5 even 5
1210.2.b.l.969.3 8 11.6 odd 10
1210.2.b.l.969.5 8 55.39 odd 10
6050.2.a.da.1.1 4 55.28 even 20
6050.2.a.dd.1.3 4 55.27 odd 20
6050.2.a.di.1.2 4 55.38 odd 20
6050.2.a.dl.1.4 4 55.17 even 20