Properties

Label 550.2.h.n.301.1
Level $550$
Weight $2$
Character 550.301
Analytic conductor $4.392$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [550,2,Mod(201,550)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(550, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("550.201"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 550 = 2 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 550.h (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,2,4,-2,0,6,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.39177211117\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.20164000000.8
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 6x^{6} + 76x^{4} + 781x^{2} + 5041 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 301.1
Root \(0.839592 - 2.58400i\) of defining polynomial
Character \(\chi\) \(=\) 550.301
Dual form 550.2.h.n.201.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.809017 + 0.587785i) q^{2} +(0.500000 - 1.53884i) q^{3} +(0.309017 + 0.951057i) q^{4} +(1.30902 - 0.951057i) q^{6} +(-1.54947 - 4.76878i) q^{7} +(-0.309017 + 0.951057i) q^{8} +(0.309017 + 0.224514i) q^{9} +(-0.969425 - 3.17178i) q^{11} +1.61803 q^{12} +(-1.88906 - 1.37249i) q^{13} +(1.54947 - 4.76878i) q^{14} +(-0.809017 + 0.587785i) q^{16} +(-0.0494717 + 0.0359433i) q^{17} +(0.118034 + 0.363271i) q^{18} +(-0.636930 + 1.96027i) q^{19} -8.11314 q^{21} +(1.08005 - 3.13584i) q^{22} +3.91525 q^{23} +(1.30902 + 0.951057i) q^{24} +(-0.721558 - 2.22073i) q^{26} +(4.42705 - 3.21644i) q^{27} +(4.05657 - 2.94727i) q^{28} +(-1.27844 - 3.93464i) q^{29} +(7.18170 + 5.21781i) q^{31} -1.00000 q^{32} +(-5.36559 - 0.0941007i) q^{33} -0.0611504 q^{34} +(-0.118034 + 0.363271i) q^{36} +(1.40815 + 4.33385i) q^{37} +(-1.66751 + 1.21151i) q^{38} +(-3.05657 + 2.22073i) q^{39} +(-1.41525 + 4.35570i) q^{41} +(-6.56367 - 4.76878i) q^{42} +3.61803 q^{43} +(2.71698 - 1.90211i) q^{44} +(3.16751 + 2.30133i) q^{46} +(2.74317 - 8.44260i) q^{47} +(0.500000 + 1.53884i) q^{48} +(-14.6773 + 10.6637i) q^{49} +(0.0305752 + 0.0941007i) q^{51} +(0.721558 - 2.22073i) q^{52} +(-1.79753 - 1.30598i) q^{53} +5.47214 q^{54} +5.01420 q^{56} +(2.69808 + 1.96027i) q^{57} +(1.27844 - 3.93464i) q^{58} +(0.599137 + 1.84396i) q^{59} +(7.84211 - 5.69763i) q^{61} +(2.74317 + 8.44260i) q^{62} +(0.591846 - 1.82151i) q^{63} +(-0.809017 - 0.587785i) q^{64} +(-4.28554 - 3.22994i) q^{66} +2.49573 q^{67} +(-0.0494717 - 0.0359433i) q^{68} +(1.95763 - 6.02495i) q^{69} +(-7.13254 + 5.18210i) q^{71} +(-0.309017 + 0.224514i) q^{72} +(1.66751 + 5.13205i) q^{73} +(-1.40815 + 4.33385i) q^{74} -2.06115 q^{76} +(-13.6235 + 9.53757i) q^{77} -3.77813 q^{78} +(5.38417 + 3.91183i) q^{79} +(-2.38197 - 7.33094i) q^{81} +(-3.70518 + 2.69197i) q^{82} +(-8.94125 + 6.49620i) q^{83} +(-2.50710 - 7.71605i) q^{84} +(2.92705 + 2.12663i) q^{86} -6.69401 q^{87} +(3.31611 + 0.0581575i) q^{88} +6.09017 q^{89} +(-3.61803 + 11.1352i) q^{91} +(1.20988 + 3.72363i) q^{92} +(11.6202 - 8.44260i) q^{93} +(7.18170 - 5.21781i) q^{94} +(-0.500000 + 1.53884i) q^{96} +(5.90765 + 4.29216i) q^{97} -18.1422 q^{98} +(0.412541 - 1.19778i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 4 q^{3} - 2 q^{4} + 6 q^{6} - 6 q^{7} + 2 q^{8} - 2 q^{9} - 10 q^{11} + 4 q^{12} - 2 q^{13} + 6 q^{14} - 2 q^{16} + 6 q^{17} - 8 q^{18} + 8 q^{19} - 8 q^{21} + 6 q^{24} - 8 q^{26} + 22 q^{27}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/550\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.809017 + 0.587785i 0.572061 + 0.415627i
\(3\) 0.500000 1.53884i 0.288675 0.888451i −0.696598 0.717462i \(-0.745304\pi\)
0.985273 0.170989i \(-0.0546962\pi\)
\(4\) 0.309017 + 0.951057i 0.154508 + 0.475528i
\(5\) 0 0
\(6\) 1.30902 0.951057i 0.534404 0.388267i
\(7\) −1.54947 4.76878i −0.585645 1.80243i −0.596664 0.802491i \(-0.703507\pi\)
0.0110184 0.999939i \(-0.496493\pi\)
\(8\) −0.309017 + 0.951057i −0.109254 + 0.336249i
\(9\) 0.309017 + 0.224514i 0.103006 + 0.0748380i
\(10\) 0 0
\(11\) −0.969425 3.17178i −0.292293 0.956329i
\(12\) 1.61803 0.467086
\(13\) −1.88906 1.37249i −0.523932 0.380659i 0.294151 0.955759i \(-0.404963\pi\)
−0.818083 + 0.575100i \(0.804963\pi\)
\(14\) 1.54947 4.76878i 0.414114 1.27451i
\(15\) 0 0
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) −0.0494717 + 0.0359433i −0.0119986 + 0.00871753i −0.593768 0.804636i \(-0.702360\pi\)
0.581770 + 0.813354i \(0.302360\pi\)
\(18\) 0.118034 + 0.363271i 0.0278209 + 0.0856239i
\(19\) −0.636930 + 1.96027i −0.146122 + 0.449717i −0.997154 0.0753974i \(-0.975977\pi\)
0.851032 + 0.525114i \(0.175977\pi\)
\(20\) 0 0
\(21\) −8.11314 −1.77043
\(22\) 1.08005 3.13584i 0.230267 0.668564i
\(23\) 3.91525 0.816387 0.408193 0.912896i \(-0.366159\pi\)
0.408193 + 0.912896i \(0.366159\pi\)
\(24\) 1.30902 + 0.951057i 0.267202 + 0.194134i
\(25\) 0 0
\(26\) −0.721558 2.22073i −0.141509 0.435521i
\(27\) 4.42705 3.21644i 0.851986 0.619004i
\(28\) 4.05657 2.94727i 0.766620 0.556982i
\(29\) −1.27844 3.93464i −0.237401 0.730644i −0.996794 0.0800122i \(-0.974504\pi\)
0.759393 0.650632i \(-0.225496\pi\)
\(30\) 0 0
\(31\) 7.18170 + 5.21781i 1.28987 + 0.937147i 0.999803 0.0198592i \(-0.00632179\pi\)
0.290069 + 0.957006i \(0.406322\pi\)
\(32\) −1.00000 −0.176777
\(33\) −5.36559 0.0941007i −0.934029 0.0163808i
\(34\) −0.0611504 −0.0104872
\(35\) 0 0
\(36\) −0.118034 + 0.363271i −0.0196723 + 0.0605452i
\(37\) 1.40815 + 4.33385i 0.231499 + 0.712481i 0.997567 + 0.0697209i \(0.0222109\pi\)
−0.766067 + 0.642760i \(0.777789\pi\)
\(38\) −1.66751 + 1.21151i −0.270505 + 0.196533i
\(39\) −3.05657 + 2.22073i −0.489443 + 0.355601i
\(40\) 0 0
\(41\) −1.41525 + 4.35570i −0.221025 + 0.680246i 0.777646 + 0.628703i \(0.216414\pi\)
−0.998671 + 0.0515429i \(0.983586\pi\)
\(42\) −6.56367 4.76878i −1.01280 0.735839i
\(43\) 3.61803 0.551745 0.275873 0.961194i \(-0.411033\pi\)
0.275873 + 0.961194i \(0.411033\pi\)
\(44\) 2.71698 1.90211i 0.409600 0.286754i
\(45\) 0 0
\(46\) 3.16751 + 2.30133i 0.467023 + 0.339312i
\(47\) 2.74317 8.44260i 0.400132 1.23148i −0.524760 0.851250i \(-0.675845\pi\)
0.924892 0.380229i \(-0.124155\pi\)
\(48\) 0.500000 + 1.53884i 0.0721688 + 0.222113i
\(49\) −14.6773 + 10.6637i −2.09676 + 1.52338i
\(50\) 0 0
\(51\) 0.0305752 + 0.0941007i 0.00428138 + 0.0131767i
\(52\) 0.721558 2.22073i 0.100062 0.307960i
\(53\) −1.79753 1.30598i −0.246910 0.179391i 0.457446 0.889237i \(-0.348764\pi\)
−0.704356 + 0.709847i \(0.748764\pi\)
\(54\) 5.47214 0.744663
\(55\) 0 0
\(56\) 5.01420 0.670050
\(57\) 2.69808 + 1.96027i 0.357370 + 0.259644i
\(58\) 1.27844 3.93464i 0.167868 0.516643i
\(59\) 0.599137 + 1.84396i 0.0780011 + 0.240063i 0.982452 0.186515i \(-0.0597192\pi\)
−0.904451 + 0.426577i \(0.859719\pi\)
\(60\) 0 0
\(61\) 7.84211 5.69763i 1.00408 0.729506i 0.0411202 0.999154i \(-0.486907\pi\)
0.962959 + 0.269648i \(0.0869073\pi\)
\(62\) 2.74317 + 8.44260i 0.348382 + 1.07221i
\(63\) 0.591846 1.82151i 0.0745655 0.229489i
\(64\) −0.809017 0.587785i −0.101127 0.0734732i
\(65\) 0 0
\(66\) −4.28554 3.22994i −0.527513 0.397578i
\(67\) 2.49573 0.304902 0.152451 0.988311i \(-0.451283\pi\)
0.152451 + 0.988311i \(0.451283\pi\)
\(68\) −0.0494717 0.0359433i −0.00599932 0.00435876i
\(69\) 1.95763 6.02495i 0.235670 0.725319i
\(70\) 0 0
\(71\) −7.13254 + 5.18210i −0.846477 + 0.615002i −0.924172 0.381975i \(-0.875244\pi\)
0.0776953 + 0.996977i \(0.475244\pi\)
\(72\) −0.309017 + 0.224514i −0.0364180 + 0.0264592i
\(73\) 1.66751 + 5.13205i 0.195167 + 0.600662i 0.999975 + 0.00712611i \(0.00226833\pi\)
−0.804808 + 0.593535i \(0.797732\pi\)
\(74\) −1.40815 + 4.33385i −0.163695 + 0.503800i
\(75\) 0 0
\(76\) −2.06115 −0.236430
\(77\) −13.6235 + 9.53757i −1.55254 + 1.08691i
\(78\) −3.77813 −0.427789
\(79\) 5.38417 + 3.91183i 0.605766 + 0.440115i 0.847921 0.530123i \(-0.177854\pi\)
−0.242155 + 0.970238i \(0.577854\pi\)
\(80\) 0 0
\(81\) −2.38197 7.33094i −0.264663 0.814549i
\(82\) −3.70518 + 2.69197i −0.409169 + 0.297278i
\(83\) −8.94125 + 6.49620i −0.981429 + 0.713050i −0.958028 0.286676i \(-0.907450\pi\)
−0.0234017 + 0.999726i \(0.507450\pi\)
\(84\) −2.50710 7.71605i −0.273547 0.841890i
\(85\) 0 0
\(86\) 2.92705 + 2.12663i 0.315632 + 0.229320i
\(87\) −6.69401 −0.717673
\(88\) 3.31611 + 0.0581575i 0.353499 + 0.00619961i
\(89\) 6.09017 0.645557 0.322778 0.946475i \(-0.395383\pi\)
0.322778 + 0.946475i \(0.395383\pi\)
\(90\) 0 0
\(91\) −3.61803 + 11.1352i −0.379273 + 1.16728i
\(92\) 1.20988 + 3.72363i 0.126139 + 0.388215i
\(93\) 11.6202 8.44260i 1.20496 0.875456i
\(94\) 7.18170 5.21781i 0.740736 0.538176i
\(95\) 0 0
\(96\) −0.500000 + 1.53884i −0.0510310 + 0.157057i
\(97\) 5.90765 + 4.29216i 0.599831 + 0.435802i 0.845819 0.533470i \(-0.179112\pi\)
−0.245988 + 0.969273i \(0.579112\pi\)
\(98\) −18.1422 −1.83263
\(99\) 0.412541 1.19778i 0.0414620 0.120382i
\(100\) 0 0
\(101\) 0.179498 + 0.130413i 0.0178608 + 0.0129766i 0.596680 0.802479i \(-0.296486\pi\)
−0.578819 + 0.815456i \(0.696486\pi\)
\(102\) −0.0305752 + 0.0941007i −0.00302739 + 0.00931736i
\(103\) 0.174918 + 0.538341i 0.0172351 + 0.0530443i 0.959304 0.282375i \(-0.0911221\pi\)
−0.942069 + 0.335419i \(0.891122\pi\)
\(104\) 1.88906 1.37249i 0.185238 0.134583i
\(105\) 0 0
\(106\) −0.686596 2.11313i −0.0666881 0.205245i
\(107\) −0.689113 + 2.12087i −0.0666191 + 0.205033i −0.978825 0.204700i \(-0.934378\pi\)
0.912206 + 0.409733i \(0.134378\pi\)
\(108\) 4.42705 + 3.21644i 0.425993 + 0.309502i
\(109\) 7.86288 0.753127 0.376563 0.926391i \(-0.377106\pi\)
0.376563 + 0.926391i \(0.377106\pi\)
\(110\) 0 0
\(111\) 7.37319 0.699832
\(112\) 4.05657 + 2.94727i 0.383310 + 0.278491i
\(113\) −3.88177 + 11.9469i −0.365166 + 1.12387i 0.584710 + 0.811242i \(0.301208\pi\)
−0.949877 + 0.312624i \(0.898792\pi\)
\(114\) 1.03058 + 3.17178i 0.0965222 + 0.297065i
\(115\) 0 0
\(116\) 3.34700 2.43174i 0.310762 0.225781i
\(117\) −0.275611 0.848243i −0.0254802 0.0784200i
\(118\) −0.599137 + 1.84396i −0.0551551 + 0.169750i
\(119\) 0.248061 + 0.180227i 0.0227397 + 0.0165214i
\(120\) 0 0
\(121\) −9.12043 + 6.14961i −0.829130 + 0.559056i
\(122\) 9.69338 0.877597
\(123\) 5.99511 + 4.35570i 0.540560 + 0.392740i
\(124\) −2.74317 + 8.44260i −0.246344 + 0.758168i
\(125\) 0 0
\(126\) 1.54947 1.12576i 0.138038 0.100290i
\(127\) −11.7008 + 8.50112i −1.03828 + 0.754353i −0.969949 0.243310i \(-0.921767\pi\)
−0.0683289 + 0.997663i \(0.521767\pi\)
\(128\) −0.309017 0.951057i −0.0273135 0.0840623i
\(129\) 1.80902 5.56758i 0.159275 0.490198i
\(130\) 0 0
\(131\) 15.3256 1.33900 0.669502 0.742810i \(-0.266507\pi\)
0.669502 + 0.742810i \(0.266507\pi\)
\(132\) −1.56856 5.13205i −0.136526 0.446688i
\(133\) 10.3350 0.896159
\(134\) 2.01909 + 1.46696i 0.174423 + 0.126726i
\(135\) 0 0
\(136\) −0.0188965 0.0581575i −0.00162036 0.00498696i
\(137\) 0.893451 0.649130i 0.0763326 0.0554589i −0.548964 0.835846i \(-0.684978\pi\)
0.625297 + 0.780387i \(0.284978\pi\)
\(138\) 5.12513 3.72363i 0.436280 0.316976i
\(139\) −3.06115 9.42125i −0.259643 0.799100i −0.992879 0.119126i \(-0.961991\pi\)
0.733236 0.679974i \(-0.238009\pi\)
\(140\) 0 0
\(141\) −11.6202 8.44260i −0.978600 0.710995i
\(142\) −8.81631 −0.739848
\(143\) −2.52192 + 7.32222i −0.210894 + 0.612315i
\(144\) −0.381966 −0.0318305
\(145\) 0 0
\(146\) −1.66751 + 5.13205i −0.138004 + 0.424732i
\(147\) 9.07108 + 27.9179i 0.748170 + 2.30263i
\(148\) −3.68660 + 2.67847i −0.303036 + 0.220169i
\(149\) −7.11314 + 5.16800i −0.582731 + 0.423379i −0.839708 0.543039i \(-0.817274\pi\)
0.256977 + 0.966418i \(0.417274\pi\)
\(150\) 0 0
\(151\) 6.67177 20.5336i 0.542941 1.67100i −0.182894 0.983133i \(-0.558547\pi\)
0.725835 0.687868i \(-0.241453\pi\)
\(152\) −1.66751 1.21151i −0.135253 0.0982667i
\(153\) −0.0233574 −0.00188833
\(154\) −16.6276 0.291613i −1.33989 0.0234988i
\(155\) 0 0
\(156\) −3.05657 2.22073i −0.244721 0.177801i
\(157\) 1.05521 3.24760i 0.0842148 0.259186i −0.900078 0.435728i \(-0.856491\pi\)
0.984293 + 0.176542i \(0.0564910\pi\)
\(158\) 2.05657 + 6.32947i 0.163612 + 0.503546i
\(159\) −2.90847 + 2.11313i −0.230657 + 0.167582i
\(160\) 0 0
\(161\) −6.06657 18.6710i −0.478113 1.47148i
\(162\) 2.38197 7.33094i 0.187145 0.575973i
\(163\) −14.0853 10.2336i −1.10324 0.801554i −0.121657 0.992572i \(-0.538821\pi\)
−0.981586 + 0.191019i \(0.938821\pi\)
\(164\) −4.57985 −0.357626
\(165\) 0 0
\(166\) −11.0520 −0.857801
\(167\) −2.67460 1.94321i −0.206967 0.150370i 0.479473 0.877556i \(-0.340828\pi\)
−0.686440 + 0.727186i \(0.740828\pi\)
\(168\) 2.50710 7.71605i 0.193427 0.595306i
\(169\) −2.33237 7.17831i −0.179413 0.552178i
\(170\) 0 0
\(171\) −0.636930 + 0.462757i −0.0487073 + 0.0353879i
\(172\) 1.11803 + 3.44095i 0.0852493 + 0.262370i
\(173\) 1.58482 4.87758i 0.120492 0.370836i −0.872561 0.488505i \(-0.837542\pi\)
0.993053 + 0.117670i \(0.0375424\pi\)
\(174\) −5.41557 3.93464i −0.410553 0.298284i
\(175\) 0 0
\(176\) 2.64861 + 1.99621i 0.199646 + 0.150470i
\(177\) 3.13712 0.235801
\(178\) 4.92705 + 3.57971i 0.369298 + 0.268311i
\(179\) −4.46201 + 13.7327i −0.333507 + 1.02643i 0.633947 + 0.773377i \(0.281434\pi\)
−0.967453 + 0.253051i \(0.918566\pi\)
\(180\) 0 0
\(181\) −9.63223 + 6.99822i −0.715958 + 0.520174i −0.885090 0.465419i \(-0.845903\pi\)
0.169132 + 0.985593i \(0.445903\pi\)
\(182\) −9.47214 + 6.88191i −0.702121 + 0.510121i
\(183\) −4.84669 14.9166i −0.358278 1.10267i
\(184\) −1.20988 + 3.72363i −0.0891935 + 0.274509i
\(185\) 0 0
\(186\) 14.3634 1.05318
\(187\) 0.161963 + 0.122069i 0.0118439 + 0.00892658i
\(188\) 8.87707 0.647427
\(189\) −22.1981 16.1279i −1.61467 1.17313i
\(190\) 0 0
\(191\) 3.25026 + 10.0033i 0.235181 + 0.723812i 0.997097 + 0.0761369i \(0.0242586\pi\)
−0.761917 + 0.647675i \(0.775741\pi\)
\(192\) −1.30902 + 0.951057i −0.0944702 + 0.0686366i
\(193\) −3.93885 + 2.86174i −0.283525 + 0.205993i −0.720453 0.693503i \(-0.756066\pi\)
0.436929 + 0.899496i \(0.356066\pi\)
\(194\) 2.25652 + 6.94485i 0.162009 + 0.498612i
\(195\) 0 0
\(196\) −14.6773 10.6637i −1.04838 0.761692i
\(197\) −15.9760 −1.13824 −0.569122 0.822253i \(-0.692717\pi\)
−0.569122 + 0.822253i \(0.692717\pi\)
\(198\) 1.03779 0.726543i 0.0737527 0.0516331i
\(199\) 16.7076 1.18437 0.592184 0.805803i \(-0.298266\pi\)
0.592184 + 0.805803i \(0.298266\pi\)
\(200\) 0 0
\(201\) 1.24787 3.84054i 0.0880177 0.270891i
\(202\) 0.0685623 + 0.211013i 0.00482403 + 0.0148468i
\(203\) −16.7825 + 12.1932i −1.17790 + 0.855797i
\(204\) −0.0800469 + 0.0581575i −0.00560440 + 0.00407184i
\(205\) 0 0
\(206\) −0.174918 + 0.538341i −0.0121871 + 0.0375080i
\(207\) 1.20988 + 0.879029i 0.0840924 + 0.0610967i
\(208\) 2.33501 0.161904
\(209\) 6.83501 + 0.119871i 0.472788 + 0.00829167i
\(210\) 0 0
\(211\) 12.7388 + 9.25526i 0.876974 + 0.637159i 0.932449 0.361301i \(-0.117667\pi\)
−0.0554754 + 0.998460i \(0.517667\pi\)
\(212\) 0.686596 2.11313i 0.0471556 0.145130i
\(213\) 4.40815 + 13.5669i 0.302042 + 0.929589i
\(214\) −1.80412 + 1.31077i −0.123327 + 0.0896025i
\(215\) 0 0
\(216\) 1.69098 + 5.20431i 0.115057 + 0.354108i
\(217\) 13.7548 42.3328i 0.933735 2.87374i
\(218\) 6.36120 + 4.62168i 0.430835 + 0.313020i
\(219\) 8.73117 0.589998
\(220\) 0 0
\(221\) 0.142787 0.00960488
\(222\) 5.96504 + 4.33385i 0.400347 + 0.290869i
\(223\) 4.49794 13.8432i 0.301204 0.927011i −0.679862 0.733340i \(-0.737961\pi\)
0.981067 0.193671i \(-0.0620395\pi\)
\(224\) 1.54947 + 4.76878i 0.103528 + 0.318628i
\(225\) 0 0
\(226\) −10.1626 + 7.38357i −0.676007 + 0.491148i
\(227\) −3.03966 9.35512i −0.201749 0.620921i −0.999831 0.0183719i \(-0.994152\pi\)
0.798082 0.602549i \(-0.205848\pi\)
\(228\) −1.03058 + 3.17178i −0.0682515 + 0.210057i
\(229\) 12.5785 + 9.13881i 0.831210 + 0.603909i 0.919901 0.392150i \(-0.128268\pi\)
−0.0886913 + 0.996059i \(0.528268\pi\)
\(230\) 0 0
\(231\) 7.86508 + 25.7331i 0.517484 + 1.69312i
\(232\) 4.13712 0.271616
\(233\) −20.9509 15.2217i −1.37254 0.997206i −0.997534 0.0701824i \(-0.977642\pi\)
−0.375002 0.927024i \(-0.622358\pi\)
\(234\) 0.275611 0.848243i 0.0180172 0.0554513i
\(235\) 0 0
\(236\) −1.56856 + 1.13963i −0.102105 + 0.0741834i
\(237\) 8.71177 6.32947i 0.565890 0.411143i
\(238\) 0.0947508 + 0.291613i 0.00614178 + 0.0189025i
\(239\) 6.17911 19.0173i 0.399693 1.23013i −0.525552 0.850761i \(-0.676141\pi\)
0.925246 0.379369i \(-0.123859\pi\)
\(240\) 0 0
\(241\) 9.01381 0.580630 0.290315 0.956931i \(-0.406240\pi\)
0.290315 + 0.956931i \(0.406240\pi\)
\(242\) −10.9932 0.385714i −0.706672 0.0247946i
\(243\) 3.94427 0.253025
\(244\) 7.84211 + 5.69763i 0.502040 + 0.364753i
\(245\) 0 0
\(246\) 2.28993 + 7.04767i 0.146000 + 0.449343i
\(247\) 3.89364 2.82890i 0.247747 0.179998i
\(248\) −7.18170 + 5.21781i −0.456038 + 0.331331i
\(249\) 5.52599 + 17.0073i 0.350196 + 1.07779i
\(250\) 0 0
\(251\) −1.06115 0.770971i −0.0669792 0.0486632i 0.553792 0.832655i \(-0.313180\pi\)
−0.620771 + 0.783992i \(0.713180\pi\)
\(252\) 1.91525 0.120650
\(253\) −3.79554 12.4183i −0.238624 0.780734i
\(254\) −14.4630 −0.907488
\(255\) 0 0
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) 1.37945 + 4.24551i 0.0860477 + 0.264827i 0.984817 0.173594i \(-0.0555379\pi\)
−0.898770 + 0.438421i \(0.855538\pi\)
\(258\) 4.73607 3.44095i 0.294855 0.214224i
\(259\) 18.4853 13.4304i 1.14862 0.834522i
\(260\) 0 0
\(261\) 0.488321 1.50290i 0.0302263 0.0930271i
\(262\) 12.3987 + 9.00817i 0.765993 + 0.556526i
\(263\) 14.1791 0.874320 0.437160 0.899384i \(-0.355984\pi\)
0.437160 + 0.899384i \(0.355984\pi\)
\(264\) 1.74755 5.07390i 0.107554 0.312277i
\(265\) 0 0
\(266\) 8.36120 + 6.07477i 0.512658 + 0.372468i
\(267\) 3.04508 9.37181i 0.186356 0.573545i
\(268\) 0.771224 + 2.37358i 0.0471100 + 0.144990i
\(269\) 25.8847 18.8063i 1.57822 1.14664i 0.659516 0.751691i \(-0.270761\pi\)
0.918702 0.394952i \(-0.129239\pi\)
\(270\) 0 0
\(271\) 0.327988 + 1.00944i 0.0199238 + 0.0613192i 0.960524 0.278197i \(-0.0897367\pi\)
−0.940600 + 0.339516i \(0.889737\pi\)
\(272\) 0.0188965 0.0581575i 0.00114577 0.00352631i
\(273\) 15.3262 + 11.1352i 0.927586 + 0.673931i
\(274\) 1.10437 0.0667172
\(275\) 0 0
\(276\) 6.33501 0.381323
\(277\) 5.36641 + 3.89892i 0.322436 + 0.234264i 0.737214 0.675659i \(-0.236141\pi\)
−0.414778 + 0.909923i \(0.636141\pi\)
\(278\) 3.06115 9.42125i 0.183596 0.565049i
\(279\) 1.04780 + 3.22478i 0.0627299 + 0.193063i
\(280\) 0 0
\(281\) −12.6582 + 9.19674i −0.755126 + 0.548631i −0.897412 0.441194i \(-0.854555\pi\)
0.142285 + 0.989826i \(0.454555\pi\)
\(282\) −4.43854 13.6604i −0.264311 0.813465i
\(283\) 6.95305 21.3993i 0.413316 1.27205i −0.500433 0.865775i \(-0.666826\pi\)
0.913749 0.406280i \(-0.133174\pi\)
\(284\) −7.13254 5.18210i −0.423239 0.307501i
\(285\) 0 0
\(286\) −6.34417 + 4.44146i −0.375139 + 0.262629i
\(287\) 22.9643 1.35554
\(288\) −0.309017 0.224514i −0.0182090 0.0132296i
\(289\) −5.25213 + 16.1644i −0.308949 + 0.950847i
\(290\) 0 0
\(291\) 9.55877 6.94485i 0.560345 0.407115i
\(292\) −4.36559 + 3.17178i −0.255477 + 0.185615i
\(293\) 5.62063 + 17.2985i 0.328360 + 1.01059i 0.969901 + 0.243500i \(0.0782957\pi\)
−0.641540 + 0.767089i \(0.721704\pi\)
\(294\) −9.07108 + 27.9179i −0.529036 + 1.62821i
\(295\) 0 0
\(296\) −4.55688 −0.264863
\(297\) −14.4935 10.9236i −0.841001 0.633849i
\(298\) −8.79232 −0.509326
\(299\) −7.39616 5.37363i −0.427731 0.310765i
\(300\) 0 0
\(301\) −5.60604 17.2536i −0.323127 0.994482i
\(302\) 17.4669 12.6905i 1.00511 0.730254i
\(303\) 0.290435 0.211013i 0.0166850 0.0121224i
\(304\) −0.636930 1.96027i −0.0365305 0.112429i
\(305\) 0 0
\(306\) −0.0188965 0.0137291i −0.00108024 0.000784841i
\(307\) −12.3820 −0.706676 −0.353338 0.935496i \(-0.614953\pi\)
−0.353338 + 0.935496i \(0.614953\pi\)
\(308\) −13.2806 10.0094i −0.756735 0.570339i
\(309\) 0.915880 0.0521026
\(310\) 0 0
\(311\) 2.90784 8.94941i 0.164889 0.507475i −0.834140 0.551553i \(-0.814035\pi\)
0.999028 + 0.0440788i \(0.0140353\pi\)
\(312\) −1.16751 3.59321i −0.0660970 0.203426i
\(313\) 12.3227 8.95297i 0.696520 0.506052i −0.182277 0.983247i \(-0.558347\pi\)
0.878797 + 0.477196i \(0.158347\pi\)
\(314\) 2.76257 2.00712i 0.155901 0.113269i
\(315\) 0 0
\(316\) −2.05657 + 6.32947i −0.115691 + 0.356061i
\(317\) −10.8867 7.90964i −0.611457 0.444250i 0.238470 0.971150i \(-0.423354\pi\)
−0.849927 + 0.526900i \(0.823354\pi\)
\(318\) −3.59506 −0.201601
\(319\) −11.2405 + 7.86928i −0.629346 + 0.440595i
\(320\) 0 0
\(321\) 2.91913 + 2.12087i 0.162930 + 0.118376i
\(322\) 6.06657 18.6710i 0.338077 1.04049i
\(323\) −0.0389485 0.119871i −0.00216715 0.00666982i
\(324\) 6.23607 4.53077i 0.346448 0.251709i
\(325\) 0 0
\(326\) −5.38010 16.5582i −0.297976 0.917076i
\(327\) 3.93144 12.0997i 0.217409 0.669116i
\(328\) −3.70518 2.69197i −0.204584 0.148639i
\(329\) −44.5114 −2.45399
\(330\) 0 0
\(331\) −3.82236 −0.210096 −0.105048 0.994467i \(-0.533500\pi\)
−0.105048 + 0.994467i \(0.533500\pi\)
\(332\) −8.94125 6.49620i −0.490715 0.356525i
\(333\) −0.537867 + 1.65538i −0.0294749 + 0.0907145i
\(334\) −1.02161 3.14419i −0.0558999 0.172042i
\(335\) 0 0
\(336\) 6.56367 4.76878i 0.358077 0.260158i
\(337\) 2.92538 + 9.00338i 0.159355 + 0.490445i 0.998576 0.0533455i \(-0.0169885\pi\)
−0.839221 + 0.543791i \(0.816988\pi\)
\(338\) 2.33237 7.17831i 0.126864 0.390449i
\(339\) 16.4434 + 11.9469i 0.893086 + 0.648865i
\(340\) 0 0
\(341\) 9.58765 27.8371i 0.519201 1.50746i
\(342\) −0.787289 −0.0425717
\(343\) 45.1989 + 32.8390i 2.44051 + 1.77314i
\(344\) −1.11803 + 3.44095i −0.0602804 + 0.185524i
\(345\) 0 0
\(346\) 4.14912 3.01451i 0.223058 0.162061i
\(347\) −13.3831 + 9.72341i −0.718444 + 0.521980i −0.885887 0.463902i \(-0.846449\pi\)
0.167443 + 0.985882i \(0.446449\pi\)
\(348\) −2.06856 6.36638i −0.110887 0.341274i
\(349\) 9.03161 27.7964i 0.483451 1.48791i −0.350761 0.936465i \(-0.614077\pi\)
0.834212 0.551444i \(-0.185923\pi\)
\(350\) 0 0
\(351\) −12.7775 −0.682012
\(352\) 0.969425 + 3.17178i 0.0516705 + 0.169057i
\(353\) −27.9200 −1.48603 −0.743017 0.669272i \(-0.766606\pi\)
−0.743017 + 0.669272i \(0.766606\pi\)
\(354\) 2.53799 + 1.84396i 0.134892 + 0.0980051i
\(355\) 0 0
\(356\) 1.88197 + 5.79210i 0.0997440 + 0.306980i
\(357\) 0.401371 0.291613i 0.0212428 0.0154338i
\(358\) −11.6817 + 8.48725i −0.617397 + 0.448565i
\(359\) 5.25768 + 16.1815i 0.277490 + 0.854025i 0.988550 + 0.150894i \(0.0482152\pi\)
−0.711060 + 0.703131i \(0.751785\pi\)
\(360\) 0 0
\(361\) 11.9343 + 8.67081i 0.628123 + 0.456358i
\(362\) −11.9061 −0.625770
\(363\) 4.90307 + 17.1097i 0.257344 + 0.898027i
\(364\) −11.7082 −0.613677
\(365\) 0 0
\(366\) 4.84669 14.9166i 0.253341 0.779702i
\(367\) 9.09719 + 27.9983i 0.474870 + 1.46150i 0.846133 + 0.532971i \(0.178925\pi\)
−0.371264 + 0.928527i \(0.621075\pi\)
\(368\) −3.16751 + 2.30133i −0.165118 + 0.119965i
\(369\) −1.41525 + 1.02824i −0.0736751 + 0.0535281i
\(370\) 0 0
\(371\) −3.44273 + 10.5956i −0.178738 + 0.550098i
\(372\) 11.6202 + 8.44260i 0.602481 + 0.437728i
\(373\) −16.0743 −0.832297 −0.416149 0.909297i \(-0.636620\pi\)
−0.416149 + 0.909297i \(0.636620\pi\)
\(374\) 0.0592807 + 0.193956i 0.00306533 + 0.0100292i
\(375\) 0 0
\(376\) 7.18170 + 5.21781i 0.370368 + 0.269088i
\(377\) −2.98518 + 9.18743i −0.153744 + 0.473177i
\(378\) −8.47892 26.0954i −0.436109 1.34220i
\(379\) −14.6618 + 10.6524i −0.753125 + 0.547178i −0.896794 0.442448i \(-0.854110\pi\)
0.143669 + 0.989626i \(0.454110\pi\)
\(380\) 0 0
\(381\) 7.23149 + 22.2562i 0.370480 + 1.14022i
\(382\) −3.25026 + 10.0033i −0.166298 + 0.511812i
\(383\) −10.6888 7.76587i −0.546172 0.396817i 0.280200 0.959942i \(-0.409599\pi\)
−0.826372 + 0.563124i \(0.809599\pi\)
\(384\) −1.61803 −0.0825700
\(385\) 0 0
\(386\) −4.86869 −0.247810
\(387\) 1.11803 + 0.812299i 0.0568329 + 0.0412915i
\(388\) −2.25652 + 6.94485i −0.114557 + 0.352572i
\(389\) −8.19653 25.2263i −0.415580 1.27902i −0.911731 0.410788i \(-0.865254\pi\)
0.496150 0.868237i \(-0.334746\pi\)
\(390\) 0 0
\(391\) −0.193694 + 0.140727i −0.00979553 + 0.00711687i
\(392\) −5.60624 17.2542i −0.283158 0.871470i
\(393\) 7.66280 23.5837i 0.386537 1.18964i
\(394\) −12.9249 9.39047i −0.651145 0.473085i
\(395\) 0 0
\(396\) 1.26664 + 0.0222142i 0.0636512 + 0.00111630i
\(397\) 30.3246 1.52195 0.760974 0.648783i \(-0.224722\pi\)
0.760974 + 0.648783i \(0.224722\pi\)
\(398\) 13.5167 + 9.82047i 0.677532 + 0.492256i
\(399\) 5.16751 15.9039i 0.258699 0.796193i
\(400\) 0 0
\(401\) −15.7565 + 11.4478i −0.786844 + 0.571676i −0.907025 0.421076i \(-0.861652\pi\)
0.120181 + 0.992752i \(0.461652\pi\)
\(402\) 3.26696 2.37358i 0.162941 0.118384i
\(403\) −6.40532 19.7136i −0.319072 0.982002i
\(404\) −0.0685623 + 0.211013i −0.00341110 + 0.0104983i
\(405\) 0 0
\(406\) −20.7444 −1.02952
\(407\) 12.3809 8.66771i 0.613701 0.429642i
\(408\) −0.0989434 −0.00489843
\(409\) 22.9197 + 16.6521i 1.13330 + 0.823394i 0.986172 0.165723i \(-0.0529958\pi\)
0.147132 + 0.989117i \(0.452996\pi\)
\(410\) 0 0
\(411\) −0.552183 1.69944i −0.0272372 0.0838274i
\(412\) −0.457940 + 0.332713i −0.0225611 + 0.0163916i
\(413\) 7.86508 5.71431i 0.387015 0.281183i
\(414\) 0.462133 + 1.42230i 0.0227126 + 0.0699022i
\(415\) 0 0
\(416\) 1.88906 + 1.37249i 0.0926190 + 0.0672916i
\(417\) −16.0284 −0.784914
\(418\) 5.45918 + 4.11450i 0.267017 + 0.201247i
\(419\) −15.4826 −0.756374 −0.378187 0.925729i \(-0.623452\pi\)
−0.378187 + 0.925729i \(0.623452\pi\)
\(420\) 0 0
\(421\) 6.63964 20.4347i 0.323596 0.995927i −0.648474 0.761237i \(-0.724592\pi\)
0.972070 0.234690i \(-0.0754076\pi\)
\(422\) 4.86578 + 14.9753i 0.236862 + 0.728988i
\(423\) 2.74317 1.99303i 0.133377 0.0969043i
\(424\) 1.79753 1.30598i 0.0872959 0.0634242i
\(425\) 0 0
\(426\) −4.40815 + 13.5669i −0.213576 + 0.657319i
\(427\) −39.3219 28.5690i −1.90292 1.38255i
\(428\) −2.23002 −0.107792
\(429\) 10.0068 + 7.54195i 0.483132 + 0.364129i
\(430\) 0 0
\(431\) −21.3896 15.5404i −1.03030 0.748557i −0.0619316 0.998080i \(-0.519726\pi\)
−0.968369 + 0.249523i \(0.919726\pi\)
\(432\) −1.69098 + 5.20431i −0.0813575 + 0.250393i
\(433\) 10.1611 + 31.2725i 0.488309 + 1.50286i 0.827130 + 0.562010i \(0.189972\pi\)
−0.338821 + 0.940851i \(0.610028\pi\)
\(434\) 36.0105 26.1631i 1.72856 1.25587i
\(435\) 0 0
\(436\) 2.42976 + 7.47804i 0.116365 + 0.358133i
\(437\) −2.49374 + 7.67495i −0.119292 + 0.367143i
\(438\) 7.06367 + 5.13205i 0.337515 + 0.245219i
\(439\) −12.1796 −0.581299 −0.290649 0.956830i \(-0.593871\pi\)
−0.290649 + 0.956830i \(0.593871\pi\)
\(440\) 0 0
\(441\) −6.92969 −0.329985
\(442\) 0.115517 + 0.0839280i 0.00549458 + 0.00399205i
\(443\) −5.13247 + 15.7961i −0.243851 + 0.750496i 0.751972 + 0.659195i \(0.229103\pi\)
−0.995823 + 0.0913015i \(0.970897\pi\)
\(444\) 2.27844 + 7.01232i 0.108130 + 0.332790i
\(445\) 0 0
\(446\) 11.7757 8.55558i 0.557598 0.405119i
\(447\) 4.39616 + 13.5300i 0.207931 + 0.639947i
\(448\) −1.54947 + 4.76878i −0.0732057 + 0.225304i
\(449\) 4.33928 + 3.15267i 0.204783 + 0.148784i 0.685450 0.728119i \(-0.259605\pi\)
−0.480667 + 0.876903i \(0.659605\pi\)
\(450\) 0 0
\(451\) 15.1873 + 0.266353i 0.715143 + 0.0125421i
\(452\) −12.5617 −0.590852
\(453\) −28.2621 20.5336i −1.32787 0.964753i
\(454\) 3.03966 9.35512i 0.142658 0.439058i
\(455\) 0 0
\(456\) −2.69808 + 1.96027i −0.126349 + 0.0917981i
\(457\) 2.92247 2.12330i 0.136707 0.0993237i −0.517330 0.855786i \(-0.673074\pi\)
0.654037 + 0.756462i \(0.273074\pi\)
\(458\) 4.80456 + 14.7869i 0.224502 + 0.690947i
\(459\) −0.103404 + 0.318246i −0.00482650 + 0.0148544i
\(460\) 0 0
\(461\) −40.6625 −1.89384 −0.946922 0.321464i \(-0.895825\pi\)
−0.946922 + 0.321464i \(0.895825\pi\)
\(462\) −8.76257 + 25.4415i −0.407672 + 1.18365i
\(463\) −2.11880 −0.0984690 −0.0492345 0.998787i \(-0.515678\pi\)
−0.0492345 + 0.998787i \(0.515678\pi\)
\(464\) 3.34700 + 2.43174i 0.155381 + 0.112891i
\(465\) 0 0
\(466\) −8.00252 24.6292i −0.370709 1.14093i
\(467\) 11.1280 8.08494i 0.514941 0.374126i −0.299754 0.954017i \(-0.596905\pi\)
0.814695 + 0.579890i \(0.196905\pi\)
\(468\) 0.721558 0.524243i 0.0333540 0.0242331i
\(469\) −3.86707 11.9016i −0.178565 0.549565i
\(470\) 0 0
\(471\) −4.46993 3.24760i −0.205964 0.149641i
\(472\) −1.93885 −0.0892428
\(473\) −3.50741 11.4756i −0.161271 0.527650i
\(474\) 10.7683 0.494606
\(475\) 0 0
\(476\) −0.0947508 + 0.291613i −0.00434289 + 0.0133661i
\(477\) −0.262256 0.807142i −0.0120079 0.0369565i
\(478\) 16.1771 11.7534i 0.739924 0.537586i
\(479\) −25.4118 + 18.4628i −1.16110 + 0.843586i −0.989916 0.141654i \(-0.954758\pi\)
−0.171180 + 0.985240i \(0.554758\pi\)
\(480\) 0 0
\(481\) 3.28806 10.1196i 0.149922 0.461414i
\(482\) 7.29232 + 5.29818i 0.332156 + 0.241326i
\(483\) −31.7650 −1.44536
\(484\) −8.66700 6.77371i −0.393954 0.307896i
\(485\) 0 0
\(486\) 3.19098 + 2.31838i 0.144746 + 0.105164i
\(487\) −2.32082 + 7.14274i −0.105166 + 0.323668i −0.989769 0.142676i \(-0.954429\pi\)
0.884603 + 0.466344i \(0.154429\pi\)
\(488\) 2.99542 + 9.21895i 0.135596 + 0.417322i
\(489\) −22.7905 + 16.5582i −1.03062 + 0.748789i
\(490\) 0 0
\(491\) 3.48008 + 10.7106i 0.157054 + 0.483361i 0.998363 0.0571923i \(-0.0182148\pi\)
−0.841310 + 0.540554i \(0.818215\pi\)
\(492\) −2.28993 + 7.04767i −0.103238 + 0.317733i
\(493\) 0.204671 + 0.148702i 0.00921790 + 0.00669719i
\(494\) 4.81281 0.216539
\(495\) 0 0
\(496\) −8.87707 −0.398592
\(497\) 35.7640 + 25.9840i 1.60423 + 1.16554i
\(498\) −5.52599 + 17.0073i −0.247626 + 0.762114i
\(499\) −8.33753 25.6603i −0.373239 1.14871i −0.944659 0.328054i \(-0.893607\pi\)
0.571420 0.820658i \(-0.306393\pi\)
\(500\) 0 0
\(501\) −4.32760 + 3.14419i −0.193343 + 0.140472i
\(502\) −0.405323 1.24746i −0.0180905 0.0556767i
\(503\) −9.93662 + 30.5818i −0.443052 + 1.36357i 0.441554 + 0.897235i \(0.354427\pi\)
−0.884606 + 0.466339i \(0.845573\pi\)
\(504\) 1.54947 + 1.12576i 0.0690190 + 0.0501452i
\(505\) 0 0
\(506\) 4.22866 12.2776i 0.187987 0.545806i
\(507\) −12.2125 −0.542375
\(508\) −11.7008 8.50112i −0.519139 0.377176i
\(509\) 3.64048 11.2043i 0.161362 0.496620i −0.837388 0.546609i \(-0.815919\pi\)
0.998750 + 0.0499888i \(0.0159186\pi\)
\(510\) 0 0
\(511\) 21.8899 15.9039i 0.968352 0.703549i
\(512\) 0.809017 0.587785i 0.0357538 0.0259767i
\(513\) 3.48537 + 10.7269i 0.153883 + 0.473603i
\(514\) −1.37945 + 4.24551i −0.0608449 + 0.187261i
\(515\) 0 0
\(516\) 5.85410 0.257712
\(517\) −29.4374 0.516268i −1.29465 0.0227054i
\(518\) 22.8491 1.00393
\(519\) −6.71341 4.87758i −0.294686 0.214102i
\(520\) 0 0
\(521\) 0.718847 + 2.21238i 0.0314933 + 0.0969263i 0.965568 0.260152i \(-0.0837728\pi\)
−0.934074 + 0.357079i \(0.883773\pi\)
\(522\) 1.27844 0.928842i 0.0559559 0.0406543i
\(523\) −1.24096 + 0.901612i −0.0542635 + 0.0394248i −0.614586 0.788850i \(-0.710677\pi\)
0.560323 + 0.828274i \(0.310677\pi\)
\(524\) 4.73587 + 14.5755i 0.206888 + 0.636735i
\(525\) 0 0
\(526\) 11.4711 + 8.33426i 0.500165 + 0.363391i
\(527\) −0.542836 −0.0236463
\(528\) 4.39616 3.07768i 0.191318 0.133939i
\(529\) −7.67080 −0.333513
\(530\) 0 0
\(531\) −0.228850 + 0.704328i −0.00993125 + 0.0305652i
\(532\) 3.19369 + 9.82918i 0.138464 + 0.426149i
\(533\) 8.65163 6.28578i 0.374744 0.272267i
\(534\) 7.97214 5.79210i 0.344988 0.250648i
\(535\) 0 0
\(536\) −0.771224 + 2.37358i −0.0333118 + 0.102523i
\(537\) 18.9014 + 13.7327i 0.815655 + 0.592608i
\(538\) 31.9952 1.37941
\(539\) 48.0515 + 36.2156i 2.06972 + 1.55992i
\(540\) 0 0
\(541\) 12.4927 + 9.07650i 0.537104 + 0.390229i 0.823008 0.568029i \(-0.192294\pi\)
−0.285904 + 0.958258i \(0.592294\pi\)
\(542\) −0.327988 + 1.00944i −0.0140883 + 0.0433593i
\(543\) 5.95305 + 18.3216i 0.255470 + 0.786255i
\(544\) 0.0494717 0.0359433i 0.00212108 0.00154106i
\(545\) 0 0
\(546\) 5.85410 + 18.0171i 0.250532 + 0.771060i
\(547\) −3.29017 + 10.1261i −0.140677 + 0.432960i −0.996430 0.0844251i \(-0.973095\pi\)
0.855752 + 0.517385i \(0.173095\pi\)
\(548\) 0.893451 + 0.649130i 0.0381663 + 0.0277295i
\(549\) 3.70254 0.158021
\(550\) 0 0
\(551\) 8.52724 0.363272
\(552\) 5.12513 + 3.72363i 0.218140 + 0.158488i
\(553\) 10.3120 31.7372i 0.438513 1.34960i
\(554\) 2.04979 + 6.30859i 0.0870871 + 0.268026i
\(555\) 0 0
\(556\) 8.01420 5.82265i 0.339878 0.246936i
\(557\) 10.4818 + 32.2595i 0.444126 + 1.36688i 0.883439 + 0.468545i \(0.155222\pi\)
−0.439313 + 0.898334i \(0.644778\pi\)
\(558\) −1.04780 + 3.22478i −0.0443567 + 0.136516i
\(559\) −6.83470 4.96570i −0.289077 0.210027i
\(560\) 0 0
\(561\) 0.268827 0.188201i 0.0113499 0.00794587i
\(562\) −15.6464 −0.660005
\(563\) −1.08714 0.789857i −0.0458177 0.0332885i 0.564641 0.825337i \(-0.309015\pi\)
−0.610458 + 0.792048i \(0.709015\pi\)
\(564\) 4.43854 13.6604i 0.186896 0.575207i
\(565\) 0 0
\(566\) 18.2033 13.2255i 0.765142 0.555908i
\(567\) −31.2689 + 22.7182i −1.31317 + 0.954073i
\(568\) −2.72439 8.38481i −0.114313 0.351819i
\(569\) −9.70595 + 29.8718i −0.406894 + 1.25229i 0.512409 + 0.858742i \(0.328753\pi\)
−0.919303 + 0.393550i \(0.871247\pi\)
\(570\) 0 0
\(571\) 9.25361 0.387252 0.193626 0.981075i \(-0.437975\pi\)
0.193626 + 0.981075i \(0.437975\pi\)
\(572\) −7.74317 0.135798i −0.323758 0.00567801i
\(573\) 17.0186 0.710962
\(574\) 18.5785 + 13.4981i 0.775451 + 0.563398i
\(575\) 0 0
\(576\) −0.118034 0.363271i −0.00491808 0.0151363i
\(577\) −35.0975 + 25.4998i −1.46113 + 1.06157i −0.478060 + 0.878327i \(0.658660\pi\)
−0.983068 + 0.183244i \(0.941340\pi\)
\(578\) −13.7503 + 9.99015i −0.571936 + 0.415536i
\(579\) 2.43434 + 7.49214i 0.101168 + 0.311363i
\(580\) 0 0
\(581\) 44.8332 + 32.5732i 1.85999 + 1.35136i
\(582\) 11.8153 0.489760
\(583\) −2.39973 + 6.96744i −0.0993865 + 0.288562i
\(584\) −5.39616 −0.223295
\(585\) 0 0
\(586\) −5.62063 + 17.2985i −0.232186 + 0.714595i
\(587\) −0.992708 3.05524i −0.0409734 0.126103i 0.928477 0.371389i \(-0.121118\pi\)
−0.969451 + 0.245285i \(0.921118\pi\)
\(588\) −23.7484 + 17.2542i −0.979367 + 0.711552i
\(589\) −14.8026 + 10.7547i −0.609929 + 0.443139i
\(590\) 0 0
\(591\) −7.98801 + 24.5846i −0.328583 + 1.01127i
\(592\) −3.68660 2.67847i −0.151518 0.110084i
\(593\) 0.0315027 0.00129366 0.000646829 1.00000i \(-0.499794\pi\)
0.000646829 1.00000i \(0.499794\pi\)
\(594\) −5.30482 17.3564i −0.217660 0.712143i
\(595\) 0 0
\(596\) −7.11314 5.16800i −0.291366 0.211689i
\(597\) 8.35379 25.7103i 0.341898 1.05225i
\(598\) −2.82508 8.69471i −0.115526 0.355553i
\(599\) 8.50993 6.18283i 0.347706 0.252623i −0.400200 0.916428i \(-0.631059\pi\)
0.747906 + 0.663804i \(0.231059\pi\)
\(600\) 0 0
\(601\) 7.45305 + 22.9381i 0.304016 + 0.935665i 0.980043 + 0.198788i \(0.0637005\pi\)
−0.676026 + 0.736877i \(0.736300\pi\)
\(602\) 5.60604 17.2536i 0.228485 0.703205i
\(603\) 0.771224 + 0.560327i 0.0314067 + 0.0228183i
\(604\) 21.5903 0.878497
\(605\) 0 0
\(606\) 0.358997 0.0145833
\(607\) −2.01420 1.46340i −0.0817537 0.0593975i 0.546158 0.837682i \(-0.316090\pi\)
−0.627911 + 0.778285i \(0.716090\pi\)
\(608\) 0.636930 1.96027i 0.0258309 0.0794995i
\(609\) 10.3722 + 31.9223i 0.420302 + 1.29356i
\(610\) 0 0
\(611\) −16.7694 + 12.1836i −0.678415 + 0.492898i
\(612\) −0.00721782 0.0222142i −0.000291763 0.000897955i
\(613\) −11.6106 + 35.7338i −0.468949 + 1.44328i 0.384999 + 0.922917i \(0.374202\pi\)
−0.853948 + 0.520359i \(0.825798\pi\)
\(614\) −10.0172 7.27794i −0.404262 0.293714i
\(615\) 0 0
\(616\) −4.86089 15.9039i −0.195851 0.640788i
\(617\) −45.5803 −1.83499 −0.917496 0.397744i \(-0.869793\pi\)
−0.917496 + 0.397744i \(0.869793\pi\)
\(618\) 0.740963 + 0.538341i 0.0298059 + 0.0216553i
\(619\) 1.77382 5.45924i 0.0712957 0.219425i −0.909059 0.416667i \(-0.863198\pi\)
0.980355 + 0.197241i \(0.0631982\pi\)
\(620\) 0 0
\(621\) 17.3330 12.5932i 0.695550 0.505347i
\(622\) 7.61283 5.53104i 0.305246 0.221775i
\(623\) −9.43655 29.0427i −0.378067 1.16357i
\(624\) 1.16751 3.59321i 0.0467376 0.143844i
\(625\) 0 0
\(626\) 15.2317 0.608781
\(627\) 3.60197 10.4581i 0.143849 0.417655i
\(628\) 3.41472 0.136262
\(629\) −0.225437 0.163789i −0.00898875 0.00653071i
\(630\) 0 0
\(631\) 3.70103 + 11.3906i 0.147336 + 0.453453i 0.997304 0.0733811i \(-0.0233790\pi\)
−0.849968 + 0.526834i \(0.823379\pi\)
\(632\) −5.38417 + 3.91183i −0.214171 + 0.155604i
\(633\) 20.6118 14.9753i 0.819245 0.595216i
\(634\) −4.15834 12.7981i −0.165149 0.508276i
\(635\) 0 0
\(636\) −2.90847 2.11313i −0.115328 0.0837909i
\(637\) 42.3621 1.67845
\(638\) −13.7192 0.240605i −0.543148 0.00952563i
\(639\) −3.36753 −0.133217
\(640\) 0 0
\(641\) −10.8526 + 33.4007i −0.428650 + 1.31925i 0.470805 + 0.882237i \(0.343964\pi\)
−0.899455 + 0.437013i \(0.856036\pi\)
\(642\) 1.11501 + 3.43164i 0.0440059 + 0.135436i
\(643\) −28.8392 + 20.9529i −1.13731 + 0.826302i −0.986742 0.162298i \(-0.948109\pi\)
−0.150565 + 0.988600i \(0.548109\pi\)
\(644\) 15.8825 11.5393i 0.625858 0.454712i
\(645\) 0 0
\(646\) 0.0389485 0.119871i 0.00153241 0.00471627i
\(647\) 16.3068 + 11.8476i 0.641088 + 0.465778i 0.860224 0.509917i \(-0.170324\pi\)
−0.219136 + 0.975694i \(0.570324\pi\)
\(648\) 7.70820 0.302807
\(649\) 5.26781 3.68791i 0.206780 0.144763i
\(650\) 0 0
\(651\) −58.2661 42.3328i −2.28363 1.65915i
\(652\) 5.38010 16.5582i 0.210701 0.648470i
\(653\) −7.53504 23.1905i −0.294869 0.907513i −0.983266 0.182178i \(-0.941685\pi\)
0.688397 0.725334i \(-0.258315\pi\)
\(654\) 10.2926 7.47804i 0.402474 0.292414i
\(655\) 0 0
\(656\) −1.41525 4.35570i −0.0552563 0.170061i
\(657\) −0.636930 + 1.96027i −0.0248490 + 0.0764774i
\(658\) −36.0105 26.1631i −1.40383 1.01994i
\(659\) −6.98788 −0.272209 −0.136104 0.990694i \(-0.543458\pi\)
−0.136104 + 0.990694i \(0.543458\pi\)
\(660\) 0 0
\(661\) −3.61827 −0.140735 −0.0703673 0.997521i \(-0.522417\pi\)
−0.0703673 + 0.997521i \(0.522417\pi\)
\(662\) −3.09235 2.24673i −0.120188 0.0873215i
\(663\) 0.0713934 0.219726i 0.00277269 0.00853346i
\(664\) −3.41525 10.5111i −0.132537 0.407908i
\(665\) 0 0
\(666\) −1.40815 + 1.02308i −0.0545649 + 0.0396437i
\(667\) −5.00542 15.4051i −0.193811 0.596488i
\(668\) 1.02161 3.14419i 0.0395272 0.121652i
\(669\) −19.0536 13.8432i −0.736653 0.535210i
\(670\) 0 0
\(671\) −25.6740 19.3501i −0.991133 0.747001i
\(672\) 8.11314 0.312971
\(673\) 6.44665 + 4.68377i 0.248500 + 0.180546i 0.705062 0.709146i \(-0.250919\pi\)
−0.456562 + 0.889692i \(0.650919\pi\)
\(674\) −2.92538 + 9.00338i −0.112681 + 0.346797i
\(675\) 0 0
\(676\) 6.10624 4.43644i 0.234855 0.170632i
\(677\) 11.6778 8.48443i 0.448815 0.326083i −0.340313 0.940312i \(-0.610533\pi\)
0.789128 + 0.614229i \(0.210533\pi\)
\(678\) 6.28084 + 19.3304i 0.241214 + 0.742381i
\(679\) 11.3146 34.8229i 0.434216 1.33638i
\(680\) 0 0
\(681\) −15.9159 −0.609898
\(682\) 24.1188 16.8852i 0.923557 0.646567i
\(683\) 29.6723 1.13538 0.567690 0.823242i \(-0.307837\pi\)
0.567690 + 0.823242i \(0.307837\pi\)
\(684\) −0.636930 0.462757i −0.0243536 0.0176940i
\(685\) 0 0
\(686\) 17.2645 + 53.1345i 0.659160 + 2.02869i
\(687\) 20.3524 14.7869i 0.776493 0.564156i
\(688\) −2.92705 + 2.12663i −0.111593 + 0.0810769i
\(689\) 1.60321 + 4.93417i 0.0610774 + 0.187977i
\(690\) 0 0
\(691\) −26.1812 19.0218i −0.995980 0.723622i −0.0347577 0.999396i \(-0.511066\pi\)
−0.961223 + 0.275774i \(0.911066\pi\)
\(692\) 5.12859 0.194960
\(693\) −6.35120 0.111386i −0.241262 0.00423121i
\(694\) −16.5424 −0.627943
\(695\) 0 0
\(696\) 2.06856 6.36638i 0.0784087 0.241317i
\(697\) −0.0865432 0.266353i −0.00327806 0.0100888i
\(698\) 23.6451 17.1791i 0.894979 0.650240i
\(699\) −33.8992 + 24.6292i −1.28219 + 0.931562i
\(700\) 0 0
\(701\) 5.86089 18.0380i 0.221363 0.681284i −0.777278 0.629157i \(-0.783400\pi\)
0.998640 0.0521266i \(-0.0165999\pi\)
\(702\) −10.3372 7.51043i −0.390153 0.283463i
\(703\) −9.39242 −0.354242
\(704\) −1.08005 + 3.13584i −0.0407058 + 0.118186i
\(705\) 0 0
\(706\) −22.5878 16.4110i −0.850103 0.617636i
\(707\) 0.343785 1.05806i 0.0129294 0.0397925i
\(708\) 0.969425 + 2.98358i 0.0364332 + 0.112130i
\(709\) −6.78617 + 4.93044i −0.254860 + 0.185167i −0.707878 0.706335i \(-0.750347\pi\)
0.453018 + 0.891501i \(0.350347\pi\)
\(710\) 0 0
\(711\) 0.785540 + 2.41764i 0.0294600 + 0.0906687i
\(712\) −1.88197 + 5.79210i −0.0705297 + 0.217068i
\(713\) 28.1182 + 20.4290i 1.05303 + 0.765074i
\(714\) 0.496121 0.0185669
\(715\) 0 0
\(716\) −14.4394 −0.539625
\(717\) −26.1751 19.0173i −0.977528 0.710216i
\(718\) −5.25768 + 16.1815i −0.196215 + 0.603887i
\(719\) 2.33218 + 7.17771i 0.0869756 + 0.267684i 0.985079 0.172100i \(-0.0550552\pi\)
−0.898104 + 0.439783i \(0.855055\pi\)
\(720\) 0 0
\(721\) 2.29620 1.66829i 0.0855150 0.0621303i
\(722\) 4.55851 + 14.0297i 0.169650 + 0.522130i
\(723\) 4.50690 13.8708i 0.167614 0.515861i
\(724\) −9.63223 6.99822i −0.357979 0.260087i
\(725\) 0 0
\(726\) −6.09017 + 16.7240i −0.226027 + 0.620686i
\(727\) 24.2826 0.900593 0.450297 0.892879i \(-0.351318\pi\)
0.450297 + 0.892879i \(0.351318\pi\)
\(728\) −9.47214 6.88191i −0.351061 0.255061i
\(729\) 9.11803 28.0624i 0.337705 1.03935i
\(730\) 0 0
\(731\) −0.178990 + 0.130044i −0.00662019 + 0.00480985i
\(732\) 12.6888 9.21895i 0.468992 0.340742i
\(733\) 6.61345 + 20.3541i 0.244273 + 0.751796i 0.995755 + 0.0920424i \(0.0293395\pi\)
−0.751482 + 0.659754i \(0.770660\pi\)
\(734\) −9.09719 + 27.9983i −0.335784 + 1.03344i
\(735\) 0 0
\(736\) −3.91525 −0.144318
\(737\) −2.41943 7.91593i −0.0891207 0.291587i
\(738\) −1.74935 −0.0643944
\(739\) −28.4419 20.6642i −1.04625 0.760147i −0.0747558 0.997202i \(-0.523818\pi\)
−0.971496 + 0.237055i \(0.923818\pi\)
\(740\) 0 0
\(741\) −2.40640 7.40615i −0.0884015 0.272072i
\(742\) −9.01318 + 6.54846i −0.330884 + 0.240401i
\(743\) 27.5875 20.0435i 1.01209 0.735324i 0.0474407 0.998874i \(-0.484893\pi\)
0.964646 + 0.263550i \(0.0848935\pi\)
\(744\) 4.43854 + 13.6604i 0.162725 + 0.500815i
\(745\) 0 0
\(746\) −13.0044 9.44825i −0.476125 0.345925i
\(747\) −4.22148 −0.154456
\(748\) −0.0660453 + 0.191758i −0.00241485 + 0.00701136i
\(749\) 11.1817 0.408572
\(750\) 0 0
\(751\) −11.0690 + 34.0669i −0.403914 + 1.24312i 0.517884 + 0.855451i \(0.326720\pi\)
−0.921799 + 0.387669i \(0.873280\pi\)
\(752\) 2.74317 + 8.44260i 0.100033 + 0.307870i
\(753\) −1.71698 + 1.24746i −0.0625701 + 0.0454599i
\(754\) −7.81529 + 5.67814i −0.284616 + 0.206786i
\(755\) 0 0
\(756\) 8.47892 26.0954i 0.308375 0.949082i
\(757\) −19.6008 14.2408i −0.712404 0.517592i 0.171544 0.985176i \(-0.445124\pi\)
−0.883948 + 0.467584i \(0.845124\pi\)
\(758\) −18.1230 −0.658256
\(759\) −21.0076 0.368428i −0.762528 0.0133731i
\(760\) 0 0
\(761\) −8.62191 6.26419i −0.312544 0.227077i 0.420443 0.907319i \(-0.361875\pi\)
−0.732987 + 0.680242i \(0.761875\pi\)
\(762\) −7.23149 + 22.2562i −0.261969 + 0.806258i
\(763\) −12.1833 37.4964i −0.441065 1.35746i
\(764\) −8.50930 + 6.18237i −0.307856 + 0.223670i
\(765\) 0 0
\(766\) −4.08276 12.5654i −0.147516 0.454008i
\(767\) 1.39899 4.30566i 0.0505147 0.155468i
\(768\) −1.30902 0.951057i −0.0472351 0.0343183i
\(769\) 25.8297 0.931444 0.465722 0.884931i \(-0.345795\pi\)
0.465722 + 0.884931i \(0.345795\pi\)
\(770\) 0 0
\(771\) 7.22289 0.260126
\(772\) −3.93885 2.86174i −0.141762 0.102996i
\(773\) −3.72614 + 11.4679i −0.134020 + 0.412471i −0.995436 0.0954286i \(-0.969578\pi\)
0.861416 + 0.507899i \(0.169578\pi\)
\(774\) 0.427051 + 1.31433i 0.0153500 + 0.0472425i
\(775\) 0 0
\(776\) −5.90765 + 4.29216i −0.212072 + 0.154079i
\(777\) −11.4246 35.1612i −0.409854 1.26140i
\(778\) 8.19653 25.2263i 0.293860 0.904407i
\(779\) −7.63693 5.54855i −0.273621 0.198798i
\(780\) 0 0
\(781\) 23.3510 + 17.5992i 0.835563 + 0.629750i
\(782\) −0.239419 −0.00856161
\(783\) −18.3153 13.3068i −0.654534 0.475547i
\(784\) 5.60624 17.2542i 0.200223 0.616222i
\(785\) 0 0
\(786\) 20.0615 14.5755i 0.715569 0.519892i
\(787\) 14.6895 10.6725i 0.523624 0.380435i −0.294343 0.955700i \(-0.595101\pi\)
0.817967 + 0.575265i \(0.195101\pi\)
\(788\) −4.93686 15.1941i −0.175868 0.541267i
\(789\) 7.08954 21.8194i 0.252394 0.776790i
\(790\) 0 0
\(791\) 62.9867 2.23955
\(792\) 1.01168 + 0.762486i 0.0359484 + 0.0270938i
\(793\) −22.6342 −0.803762
\(794\) 24.5331 + 17.8243i 0.870648 + 0.632562i
\(795\) 0 0
\(796\) 5.16292 + 15.8898i 0.182995 + 0.563201i
\(797\) −1.30306 + 0.946725i −0.0461566 + 0.0335347i −0.610624 0.791920i \(-0.709081\pi\)
0.564468 + 0.825455i \(0.309081\pi\)
\(798\) 13.5287 9.82918i 0.478911 0.347949i
\(799\) 0.167746 + 0.516268i 0.00593441 + 0.0182642i
\(800\) 0 0
\(801\) 1.88197 + 1.36733i 0.0664960 + 0.0483122i
\(802\) −19.4762 −0.687727
\(803\) 14.6612 10.2641i 0.517384 0.362213i
\(804\) 4.03818 0.142416
\(805\) 0 0
\(806\) 6.40532 19.7136i 0.225618 0.694380i
\(807\) −15.9976 49.2356i −0.563143 1.73318i
\(808\) −0.179498 + 0.130413i −0.00631473 + 0.00458792i
\(809\) −20.7273 + 15.0593i −0.728733 + 0.529455i −0.889162 0.457592i \(-0.848712\pi\)
0.160429 + 0.987047i \(0.448712\pi\)
\(810\) 0 0
\(811\) 13.5506 41.7045i 0.475827 1.46444i −0.369012 0.929424i \(-0.620304\pi\)
0.844839 0.535020i \(-0.179696\pi\)
\(812\) −16.7825 12.1932i −0.588951 0.427898i
\(813\) 1.71737 0.0602306
\(814\) 15.1111 + 0.265017i 0.529646 + 0.00928883i
\(815\) 0 0
\(816\) −0.0800469 0.0581575i −0.00280220 0.00203592i
\(817\) −2.30444 + 7.09233i −0.0806220 + 0.248129i
\(818\) 8.75453 + 26.9437i 0.306095 + 0.942063i
\(819\) −3.61803 + 2.62866i −0.126424 + 0.0918527i
\(820\) 0 0
\(821\) −5.43938 16.7407i −0.189836 0.584254i 0.810163 0.586205i \(-0.199379\pi\)
−0.999998 + 0.00195152i \(0.999379\pi\)
\(822\) 0.552183 1.69944i 0.0192596 0.0592749i
\(823\) 10.2383 + 7.43854i 0.356884 + 0.259291i 0.751751 0.659447i \(-0.229209\pi\)
−0.394867 + 0.918738i \(0.629209\pi\)
\(824\) −0.566045 −0.0197191
\(825\) 0 0
\(826\) 9.72177 0.338264
\(827\) −7.15520 5.19856i −0.248811 0.180772i 0.456389 0.889780i \(-0.349143\pi\)
−0.705200 + 0.709009i \(0.749143\pi\)
\(828\) −0.462133 + 1.42230i −0.0160602 + 0.0494283i
\(829\) 11.6571 + 35.8767i 0.404866 + 1.24605i 0.921007 + 0.389546i \(0.127368\pi\)
−0.516141 + 0.856504i \(0.672632\pi\)
\(830\) 0 0
\(831\) 8.68303 6.30859i 0.301211 0.218843i
\(832\) 0.721558 + 2.22073i 0.0250155 + 0.0769899i
\(833\) 0.342823 1.05510i 0.0118781 0.0365571i
\(834\) −12.9672 9.42125i −0.449019 0.326231i
\(835\) 0 0
\(836\) 1.99813 + 6.53752i 0.0691068 + 0.226105i
\(837\) 48.5765 1.67905
\(838\) −12.5257 9.10044i −0.432692 0.314369i
\(839\) −11.8934 + 36.6041i −0.410606 + 1.26372i 0.505517 + 0.862817i \(0.331302\pi\)
−0.916123 + 0.400898i \(0.868698\pi\)
\(840\) 0 0
\(841\) 9.61452 6.98536i 0.331535 0.240874i
\(842\) 17.3828 12.6293i 0.599051 0.435236i
\(843\) 7.82321 + 24.0774i 0.269446 + 0.829269i
\(844\) −4.86578 + 14.9753i −0.167487 + 0.515472i
\(845\) 0 0
\(846\) 3.39074 0.116576
\(847\) 43.4580 + 33.9647i 1.49324 + 1.16704i
\(848\) 2.22187 0.0762994
\(849\) −29.4536 21.3993i −1.01084 0.734421i
\(850\) 0 0
\(851\) 5.51328 + 16.9681i 0.188993 + 0.581660i
\(852\) −11.5407 + 8.38481i −0.395378 + 0.287259i
\(853\) −41.1706 + 29.9122i −1.40965 + 1.02417i −0.416280 + 0.909237i \(0.636666\pi\)
−0.993373 + 0.114936i \(0.963334\pi\)
\(854\) −15.0196 46.2256i −0.513961 1.58181i
\(855\) 0 0
\(856\) −1.80412 1.31077i −0.0616636 0.0448012i
\(857\) 11.5197 0.393506 0.196753 0.980453i \(-0.436960\pi\)
0.196753 + 0.980453i \(0.436960\pi\)
\(858\) 3.66261 + 11.9834i 0.125039 + 0.409107i
\(859\) 23.9497 0.817153 0.408577 0.912724i \(-0.366025\pi\)
0.408577 + 0.912724i \(0.366025\pi\)
\(860\) 0 0
\(861\) 11.4821 35.3384i 0.391310 1.20433i
\(862\) −8.17010 25.1450i −0.278275 0.856441i
\(863\) 32.3684 23.5170i 1.10183 0.800530i 0.120476 0.992716i \(-0.461558\pi\)
0.981358 + 0.192187i \(0.0615579\pi\)
\(864\) −4.42705 + 3.21644i −0.150611 + 0.109426i
\(865\) 0 0
\(866\) −10.1611 + 31.2725i −0.345287 + 1.06268i
\(867\) 22.2484 + 16.1644i 0.755595 + 0.548972i
\(868\) 44.5114 1.51081
\(869\) 7.18793 20.8696i 0.243834 0.707954i
\(870\) 0 0
\(871\) −4.71460 3.42536i −0.159748 0.116064i
\(872\) −2.42976 + 7.47804i −0.0822821 + 0.253238i
\(873\) 0.861914 + 2.65270i 0.0291714 + 0.0897802i
\(874\) −6.52871 + 4.74338i −0.220837 + 0.160447i
\(875\) 0 0
\(876\) 2.69808 + 8.30384i 0.0911597 + 0.280561i
\(877\) −8.02891 + 24.7104i −0.271117 + 0.834413i 0.719104 + 0.694903i \(0.244553\pi\)
−0.990221 + 0.139510i \(0.955447\pi\)
\(878\) −9.85347 7.15897i −0.332539 0.241603i
\(879\) 29.4300 0.992648
\(880\) 0 0
\(881\) 25.1372 0.846893 0.423446 0.905921i \(-0.360820\pi\)
0.423446 + 0.905921i \(0.360820\pi\)
\(882\) −5.60624 4.07317i −0.188772 0.137151i
\(883\) 13.4332 41.3431i 0.452063 1.39131i −0.422486 0.906369i \(-0.638843\pi\)
0.874549 0.484937i \(-0.161157\pi\)
\(884\) 0.0441236 + 0.135798i 0.00148404 + 0.00456739i
\(885\) 0 0
\(886\) −13.4370 + 9.76254i −0.451424 + 0.327979i
\(887\) −8.84036 27.2078i −0.296830 0.913549i −0.982601 0.185731i \(-0.940535\pi\)
0.685770 0.727818i \(-0.259465\pi\)
\(888\) −2.27844 + 7.01232i −0.0764595 + 0.235318i
\(889\) 58.6701 + 42.6263i 1.96773 + 1.42964i
\(890\) 0 0
\(891\) −20.9430 + 14.6619i −0.701617 + 0.491191i
\(892\) 14.5556 0.487358
\(893\) 14.8026 + 10.7547i 0.495349 + 0.359892i
\(894\) −4.39616 + 13.5300i −0.147030 + 0.452511i
\(895\) 0 0
\(896\) −4.05657 + 2.94727i −0.135520 + 0.0984614i
\(897\) −11.9672 + 8.69471i −0.399575 + 0.290308i
\(898\) 1.65746 + 5.10113i 0.0553100 + 0.170227i
\(899\) 11.3488 34.9281i 0.378504 1.16492i
\(900\) 0 0
\(901\) 0.135868 0.00452643
\(902\) 12.1302 + 9.14237i 0.403893 + 0.304407i
\(903\) −29.3536 −0.976827
\(904\) −10.1626 7.38357i −0.338003 0.245574i
\(905\) 0 0
\(906\) −10.7952 33.2241i −0.358645 1.10380i
\(907\) 38.5990 28.0438i 1.28166 0.931179i 0.282056 0.959398i \(-0.408983\pi\)
0.999602 + 0.0282187i \(0.00898348\pi\)
\(908\) 7.95794 5.78178i 0.264094 0.191875i
\(909\) 0.0261885 + 0.0805998i 0.000868617 + 0.00267333i
\(910\) 0 0
\(911\) −40.3003 29.2799i −1.33521 0.970085i −0.999606 0.0280809i \(-0.991060\pi\)
−0.335602 0.942004i \(-0.608940\pi\)
\(912\) −3.33501 −0.110433
\(913\) 29.2724 + 22.0621i 0.968775 + 0.730150i
\(914\) 3.61237 0.119487
\(915\) 0 0
\(916\) −4.80456 + 14.7869i −0.158747 + 0.488573i
\(917\) −23.7466 73.0845i −0.784182 2.41346i
\(918\) −0.270716 + 0.196687i −0.00893495 + 0.00649162i
\(919\) 34.7058 25.2153i 1.14484 0.831775i 0.157053 0.987590i \(-0.449801\pi\)
0.987786 + 0.155815i \(0.0498005\pi\)
\(920\) 0 0
\(921\) −6.19098 + 19.0539i −0.204000 + 0.627847i
\(922\) −32.8967 23.9008i −1.08339 0.787132i
\(923\) 20.5862 0.677602
\(924\) −22.0432 + 15.4321i −0.725169 + 0.507679i
\(925\) 0 0
\(926\) −1.71415 1.24540i −0.0563303 0.0409264i
\(927\) −0.0668126 + 0.205628i −0.00219441 + 0.00675371i
\(928\) 1.27844 + 3.93464i 0.0419669 + 0.129161i
\(929\) 3.20719 2.33016i 0.105224 0.0764500i −0.533929 0.845529i \(-0.679285\pi\)
0.639153 + 0.769079i \(0.279285\pi\)
\(930\) 0 0
\(931\) −11.5553 35.5635i −0.378709 1.16555i
\(932\) 8.00252 24.6292i 0.262131 0.806757i
\(933\) −12.3178 8.94941i −0.403267 0.292991i
\(934\) 13.7549 0.450075
\(935\) 0 0
\(936\) 0.891895 0.0291525
\(937\) −1.71446 1.24563i −0.0560090 0.0406929i 0.559429 0.828879i \(-0.311021\pi\)
−0.615437 + 0.788186i \(0.711021\pi\)
\(938\) 3.86707 11.9016i 0.126264 0.388601i
\(939\) −7.61585 23.4392i −0.248534 0.764909i
\(940\) 0 0
\(941\) −4.08118 + 2.96515i −0.133043 + 0.0966612i −0.652316 0.757947i \(-0.726203\pi\)
0.519274 + 0.854608i \(0.326203\pi\)
\(942\) −1.70736 5.25472i −0.0556289 0.171208i
\(943\) −5.54107 + 17.0537i −0.180442 + 0.555344i
\(944\) −1.56856 1.13963i −0.0510524 0.0370917i
\(945\) 0 0
\(946\) 3.90765 11.3456i 0.127049 0.368877i
\(947\) 0.986192 0.0320470 0.0160235 0.999872i \(-0.494899\pi\)
0.0160235 + 0.999872i \(0.494899\pi\)
\(948\) 8.71177 + 6.32947i 0.282945 + 0.205572i
\(949\) 3.89364 11.9834i 0.126393 0.388998i
\(950\) 0 0
\(951\) −17.6150 + 12.7981i −0.571206 + 0.415006i
\(952\) −0.248061 + 0.180227i −0.00803969 + 0.00584118i
\(953\) −7.09580 21.8386i −0.229855 0.707422i −0.997762 0.0668608i \(-0.978702\pi\)
0.767907 0.640562i \(-0.221298\pi\)
\(954\) 0.262256 0.807142i 0.00849087 0.0261322i
\(955\) 0 0
\(956\) 19.9960 0.646718
\(957\) 6.48934 + 21.2320i 0.209770 + 0.686331i
\(958\) −31.4107 −1.01484
\(959\) −4.47994 3.25486i −0.144665 0.105105i
\(960\) 0 0
\(961\) 14.7718 + 45.4628i 0.476508 + 1.46654i
\(962\) 8.60824 6.25426i 0.277541 0.201645i
\(963\) −0.689113 + 0.500670i −0.0222064 + 0.0161339i
\(964\) 2.78542 + 8.57264i 0.0897123 + 0.276106i
\(965\) 0 0
\(966\) −25.6984 18.6710i −0.826833 0.600729i
\(967\) −20.1267 −0.647231 −0.323616 0.946189i \(-0.604898\pi\)
−0.323616 + 0.946189i \(0.604898\pi\)
\(968\) −3.03026 10.5744i −0.0973963 0.339873i
\(969\) −0.203937 −0.00655141
\(970\) 0 0
\(971\) −6.77852 + 20.8621i −0.217533 + 0.669498i 0.781431 + 0.623991i \(0.214490\pi\)
−0.998964 + 0.0455060i \(0.985510\pi\)
\(972\) 1.21885 + 3.75123i 0.0390945 + 0.120321i
\(973\) −40.1847 + 29.1959i −1.28826 + 0.935978i
\(974\) −6.07597 + 4.41445i −0.194687 + 0.141448i
\(975\) 0 0
\(976\) −2.99542 + 9.21895i −0.0958810 + 0.295091i
\(977\) 47.7788 + 34.7133i 1.52858 + 1.11058i 0.957022 + 0.290015i \(0.0936604\pi\)
0.571557 + 0.820562i \(0.306340\pi\)
\(978\) −28.1706 −0.900795
\(979\) −5.90396 19.3167i −0.188691 0.617365i
\(980\) 0 0
\(981\) 2.42976 + 1.76533i 0.0775763 + 0.0563625i
\(982\) −3.48008 + 10.7106i −0.111054 + 0.341788i
\(983\) −14.9382 45.9751i −0.476455 1.46638i −0.843985 0.536367i \(-0.819796\pi\)
0.367530 0.930012i \(-0.380204\pi\)
\(984\) −5.99511 + 4.35570i −0.191117 + 0.138855i
\(985\) 0 0
\(986\) 0.0781772 + 0.240605i 0.00248967 + 0.00766241i
\(987\) −22.2557 + 68.4960i −0.708406 + 2.18025i
\(988\) 3.89364 + 2.82890i 0.123873 + 0.0899992i
\(989\) 14.1655 0.450437
\(990\) 0 0
\(991\) −55.0154 −1.74762 −0.873811 0.486266i \(-0.838359\pi\)
−0.873811 + 0.486266i \(0.838359\pi\)
\(992\) −7.18170 5.21781i −0.228019 0.165666i
\(993\) −1.91118 + 5.88201i −0.0606495 + 0.186660i
\(994\) 13.6606 + 42.0431i 0.433289 + 1.33353i
\(995\) 0 0
\(996\) −14.4672 + 10.5111i −0.458412 + 0.333056i
\(997\) 7.09810 + 21.8457i 0.224799 + 0.691861i 0.998312 + 0.0580799i \(0.0184978\pi\)
−0.773513 + 0.633781i \(0.781502\pi\)
\(998\) 8.33753 25.6603i 0.263920 0.812262i
\(999\) 20.1736 + 14.6569i 0.638263 + 0.463725i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 550.2.h.n.301.1 8
5.2 odd 4 110.2.j.b.59.2 16
5.3 odd 4 110.2.j.b.59.4 yes 16
5.4 even 2 550.2.h.j.301.2 8
11.3 even 5 inner 550.2.h.n.201.1 8
11.5 even 5 6050.2.a.dd.1.3 4
11.6 odd 10 6050.2.a.dl.1.4 4
15.2 even 4 990.2.ba.h.829.3 16
15.8 even 4 990.2.ba.h.829.1 16
20.3 even 4 880.2.cd.b.609.2 16
20.7 even 4 880.2.cd.b.609.4 16
55.3 odd 20 110.2.j.b.69.2 yes 16
55.14 even 10 550.2.h.j.201.2 8
55.17 even 20 1210.2.b.l.969.5 8
55.27 odd 20 1210.2.b.k.969.1 8
55.28 even 20 1210.2.b.l.969.3 8
55.38 odd 20 1210.2.b.k.969.7 8
55.39 odd 10 6050.2.a.da.1.1 4
55.47 odd 20 110.2.j.b.69.4 yes 16
55.49 even 10 6050.2.a.di.1.2 4
165.47 even 20 990.2.ba.h.289.1 16
165.113 even 20 990.2.ba.h.289.3 16
220.3 even 20 880.2.cd.b.289.4 16
220.47 even 20 880.2.cd.b.289.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.j.b.59.2 16 5.2 odd 4
110.2.j.b.59.4 yes 16 5.3 odd 4
110.2.j.b.69.2 yes 16 55.3 odd 20
110.2.j.b.69.4 yes 16 55.47 odd 20
550.2.h.j.201.2 8 55.14 even 10
550.2.h.j.301.2 8 5.4 even 2
550.2.h.n.201.1 8 11.3 even 5 inner
550.2.h.n.301.1 8 1.1 even 1 trivial
880.2.cd.b.289.2 16 220.47 even 20
880.2.cd.b.289.4 16 220.3 even 20
880.2.cd.b.609.2 16 20.3 even 4
880.2.cd.b.609.4 16 20.7 even 4
990.2.ba.h.289.1 16 165.47 even 20
990.2.ba.h.289.3 16 165.113 even 20
990.2.ba.h.829.1 16 15.8 even 4
990.2.ba.h.829.3 16 15.2 even 4
1210.2.b.k.969.1 8 55.27 odd 20
1210.2.b.k.969.7 8 55.38 odd 20
1210.2.b.l.969.3 8 55.28 even 20
1210.2.b.l.969.5 8 55.17 even 20
6050.2.a.da.1.1 4 55.39 odd 10
6050.2.a.dd.1.3 4 11.5 even 5
6050.2.a.di.1.2 4 55.49 even 10
6050.2.a.dl.1.4 4 11.6 odd 10