Properties

Label 880.2.cd.b.289.4
Level $880$
Weight $2$
Character 880.289
Analytic conductor $7.027$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [880,2,Mod(49,880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(880, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 5, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("880.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.cd (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 8 x^{14} + 10 x^{13} - 109 x^{12} + 280 x^{11} - 198 x^{10} - 1168 x^{9} + \cdots + 390625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 289.4
Root \(1.19237 - 1.89162i\) of defining polynomial
Character \(\chi\) \(=\) 880.289
Dual form 880.2.cd.b.609.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.53884 - 0.500000i) q^{3} +(-0.829496 + 2.07652i) q^{5} +(-4.76878 - 1.54947i) q^{7} +(-0.309017 + 0.224514i) q^{9} +(0.969425 - 3.17178i) q^{11} +(-1.37249 - 1.88906i) q^{13} +(-0.238203 + 3.61018i) q^{15} +(-0.0359433 + 0.0494717i) q^{17} +(-0.636930 - 1.96027i) q^{19} -8.11314 q^{21} -3.91525i q^{23} +(-3.62387 - 3.44493i) q^{25} +(-3.21644 + 4.42705i) q^{27} +(1.27844 - 3.93464i) q^{29} +(-7.18170 + 5.21781i) q^{31} +(-0.0941007 - 5.36559i) q^{33} +(7.17320 - 8.61720i) q^{35} +(-4.33385 - 1.40815i) q^{37} +(-3.05657 - 2.22073i) q^{39} +(-1.41525 - 4.35570i) q^{41} -3.61803i q^{43} +(-0.209880 - 0.827913i) q^{45} +(-8.44260 + 2.74317i) q^{47} +(14.6773 + 10.6637i) q^{49} +(-0.0305752 + 0.0941007i) q^{51} +(-1.30598 - 1.79753i) q^{53} +(5.78214 + 4.64401i) q^{55} +(-1.96027 - 2.69808i) q^{57} +(0.599137 - 1.84396i) q^{59} +(7.84211 + 5.69763i) q^{61} +(1.82151 - 0.591846i) q^{63} +(5.06115 - 1.28302i) q^{65} +2.49573i q^{67} +(-1.95763 - 6.02495i) q^{69} +(7.13254 + 5.18210i) q^{71} +(5.13205 + 1.66751i) q^{73} +(-7.29903 - 3.48927i) q^{75} +(-9.53757 + 13.6235i) q^{77} +(5.38417 - 3.91183i) q^{79} +(-2.38197 + 7.33094i) q^{81} +(-6.49620 + 8.94125i) q^{83} +(-0.0729142 - 0.115674i) q^{85} -6.69401i q^{87} -6.09017 q^{89} +(3.61803 + 11.1352i) q^{91} +(-8.44260 + 11.6202i) q^{93} +(4.59887 + 0.303437i) q^{95} +(-4.29216 - 5.90765i) q^{97} +(0.412541 + 1.19778i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{5} + 4 q^{9} + 20 q^{11} - 2 q^{15} + 16 q^{19} - 16 q^{21} + 16 q^{29} + 4 q^{31} + 48 q^{35} + 8 q^{39} + 40 q^{41} - 4 q^{45} + 84 q^{49} + 4 q^{51} - 32 q^{55} + 20 q^{61} + 72 q^{65} + 56 q^{71}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.53884 0.500000i 0.888451 0.288675i 0.170989 0.985273i \(-0.445304\pi\)
0.717462 + 0.696598i \(0.245304\pi\)
\(4\) 0 0
\(5\) −0.829496 + 2.07652i −0.370962 + 0.928648i
\(6\) 0 0
\(7\) −4.76878 1.54947i −1.80243 0.585645i −0.802491 0.596664i \(-0.796493\pi\)
−0.999939 + 0.0110184i \(0.996493\pi\)
\(8\) 0 0
\(9\) −0.309017 + 0.224514i −0.103006 + 0.0748380i
\(10\) 0 0
\(11\) 0.969425 3.17178i 0.292293 0.956329i
\(12\) 0 0
\(13\) −1.37249 1.88906i −0.380659 0.523932i 0.575100 0.818083i \(-0.304963\pi\)
−0.955759 + 0.294151i \(0.904963\pi\)
\(14\) 0 0
\(15\) −0.238203 + 3.61018i −0.0615037 + 0.932146i
\(16\) 0 0
\(17\) −0.0359433 + 0.0494717i −0.00871753 + 0.0119986i −0.813354 0.581770i \(-0.802360\pi\)
0.804636 + 0.593768i \(0.202360\pi\)
\(18\) 0 0
\(19\) −0.636930 1.96027i −0.146122 0.449717i 0.851032 0.525114i \(-0.175977\pi\)
−0.997154 + 0.0753974i \(0.975977\pi\)
\(20\) 0 0
\(21\) −8.11314 −1.77043
\(22\) 0 0
\(23\) 3.91525i 0.816387i −0.912896 0.408193i \(-0.866159\pi\)
0.912896 0.408193i \(-0.133841\pi\)
\(24\) 0 0
\(25\) −3.62387 3.44493i −0.724775 0.688986i
\(26\) 0 0
\(27\) −3.21644 + 4.42705i −0.619004 + 0.851986i
\(28\) 0 0
\(29\) 1.27844 3.93464i 0.237401 0.730644i −0.759393 0.650632i \(-0.774504\pi\)
0.996794 0.0800122i \(-0.0254959\pi\)
\(30\) 0 0
\(31\) −7.18170 + 5.21781i −1.28987 + 0.937147i −0.999803 0.0198592i \(-0.993678\pi\)
−0.290069 + 0.957006i \(0.593678\pi\)
\(32\) 0 0
\(33\) −0.0941007 5.36559i −0.0163808 0.934029i
\(34\) 0 0
\(35\) 7.17320 8.61720i 1.21249 1.45657i
\(36\) 0 0
\(37\) −4.33385 1.40815i −0.712481 0.231499i −0.0697209 0.997567i \(-0.522211\pi\)
−0.642760 + 0.766067i \(0.722211\pi\)
\(38\) 0 0
\(39\) −3.05657 2.22073i −0.489443 0.355601i
\(40\) 0 0
\(41\) −1.41525 4.35570i −0.221025 0.680246i −0.998671 0.0515429i \(-0.983586\pi\)
0.777646 0.628703i \(-0.216414\pi\)
\(42\) 0 0
\(43\) 3.61803i 0.551745i −0.961194 0.275873i \(-0.911033\pi\)
0.961194 0.275873i \(-0.0889668\pi\)
\(44\) 0 0
\(45\) −0.209880 0.827913i −0.0312870 0.123418i
\(46\) 0 0
\(47\) −8.44260 + 2.74317i −1.23148 + 0.400132i −0.851250 0.524760i \(-0.824155\pi\)
−0.380229 + 0.924892i \(0.624155\pi\)
\(48\) 0 0
\(49\) 14.6773 + 10.6637i 2.09676 + 1.52338i
\(50\) 0 0
\(51\) −0.0305752 + 0.0941007i −0.00428138 + 0.0131767i
\(52\) 0 0
\(53\) −1.30598 1.79753i −0.179391 0.246910i 0.709847 0.704356i \(-0.248764\pi\)
−0.889237 + 0.457446i \(0.848764\pi\)
\(54\) 0 0
\(55\) 5.78214 + 4.64401i 0.779664 + 0.626199i
\(56\) 0 0
\(57\) −1.96027 2.69808i −0.259644 0.357370i
\(58\) 0 0
\(59\) 0.599137 1.84396i 0.0780011 0.240063i −0.904451 0.426577i \(-0.859719\pi\)
0.982452 + 0.186515i \(0.0597192\pi\)
\(60\) 0 0
\(61\) 7.84211 + 5.69763i 1.00408 + 0.729506i 0.962959 0.269648i \(-0.0869073\pi\)
0.0411202 + 0.999154i \(0.486907\pi\)
\(62\) 0 0
\(63\) 1.82151 0.591846i 0.229489 0.0745655i
\(64\) 0 0
\(65\) 5.06115 1.28302i 0.627758 0.159139i
\(66\) 0 0
\(67\) 2.49573i 0.304902i 0.988311 + 0.152451i \(0.0487167\pi\)
−0.988311 + 0.152451i \(0.951283\pi\)
\(68\) 0 0
\(69\) −1.95763 6.02495i −0.235670 0.725319i
\(70\) 0 0
\(71\) 7.13254 + 5.18210i 0.846477 + 0.615002i 0.924172 0.381975i \(-0.124756\pi\)
−0.0776953 + 0.996977i \(0.524756\pi\)
\(72\) 0 0
\(73\) 5.13205 + 1.66751i 0.600662 + 0.195167i 0.593535 0.804808i \(-0.297732\pi\)
0.00712611 + 0.999975i \(0.497732\pi\)
\(74\) 0 0
\(75\) −7.29903 3.48927i −0.842820 0.402906i
\(76\) 0 0
\(77\) −9.53757 + 13.6235i −1.08691 + 1.55254i
\(78\) 0 0
\(79\) 5.38417 3.91183i 0.605766 0.440115i −0.242155 0.970238i \(-0.577854\pi\)
0.847921 + 0.530123i \(0.177854\pi\)
\(80\) 0 0
\(81\) −2.38197 + 7.33094i −0.264663 + 0.814549i
\(82\) 0 0
\(83\) −6.49620 + 8.94125i −0.713050 + 0.981429i 0.286676 + 0.958028i \(0.407450\pi\)
−0.999726 + 0.0234017i \(0.992550\pi\)
\(84\) 0 0
\(85\) −0.0729142 0.115674i −0.00790865 0.0125466i
\(86\) 0 0
\(87\) 6.69401i 0.717673i
\(88\) 0 0
\(89\) −6.09017 −0.645557 −0.322778 0.946475i \(-0.604617\pi\)
−0.322778 + 0.946475i \(0.604617\pi\)
\(90\) 0 0
\(91\) 3.61803 + 11.1352i 0.379273 + 1.16728i
\(92\) 0 0
\(93\) −8.44260 + 11.6202i −0.875456 + 1.20496i
\(94\) 0 0
\(95\) 4.59887 + 0.303437i 0.471834 + 0.0311320i
\(96\) 0 0
\(97\) −4.29216 5.90765i −0.435802 0.599831i 0.533470 0.845819i \(-0.320888\pi\)
−0.969273 + 0.245988i \(0.920888\pi\)
\(98\) 0 0
\(99\) 0.412541 + 1.19778i 0.0414620 + 0.120382i
\(100\) 0 0
\(101\) 0.179498 0.130413i 0.0178608 0.0129766i −0.578819 0.815456i \(-0.696486\pi\)
0.596680 + 0.802479i \(0.296486\pi\)
\(102\) 0 0
\(103\) −0.538341 0.174918i −0.0530443 0.0172351i 0.282375 0.959304i \(-0.408878\pi\)
−0.335419 + 0.942069i \(0.608878\pi\)
\(104\) 0 0
\(105\) 6.72982 16.8471i 0.656763 1.64411i
\(106\) 0 0
\(107\) 2.12087 0.689113i 0.205033 0.0666191i −0.204700 0.978825i \(-0.565622\pi\)
0.409733 + 0.912206i \(0.365622\pi\)
\(108\) 0 0
\(109\) −7.86288 −0.753127 −0.376563 0.926391i \(-0.622894\pi\)
−0.376563 + 0.926391i \(0.622894\pi\)
\(110\) 0 0
\(111\) −7.37319 −0.699832
\(112\) 0 0
\(113\) 11.9469 3.88177i 1.12387 0.365166i 0.312624 0.949877i \(-0.398792\pi\)
0.811242 + 0.584710i \(0.198792\pi\)
\(114\) 0 0
\(115\) 8.13010 + 3.24769i 0.758136 + 0.302848i
\(116\) 0 0
\(117\) 0.848243 + 0.275611i 0.0784200 + 0.0254802i
\(118\) 0 0
\(119\) 0.248061 0.180227i 0.0227397 0.0165214i
\(120\) 0 0
\(121\) −9.12043 6.14961i −0.829130 0.559056i
\(122\) 0 0
\(123\) −4.35570 5.99511i −0.392740 0.540560i
\(124\) 0 0
\(125\) 10.1595 4.66749i 0.908689 0.417473i
\(126\) 0 0
\(127\) 8.50112 11.7008i 0.754353 1.03828i −0.243310 0.969949i \(-0.578233\pi\)
0.997663 0.0683289i \(-0.0217667\pi\)
\(128\) 0 0
\(129\) −1.80902 5.56758i −0.159275 0.490198i
\(130\) 0 0
\(131\) −15.3256 −1.33900 −0.669502 0.742810i \(-0.733493\pi\)
−0.669502 + 0.742810i \(0.733493\pi\)
\(132\) 0 0
\(133\) 10.3350i 0.896159i
\(134\) 0 0
\(135\) −6.52484 10.3512i −0.561569 0.890892i
\(136\) 0 0
\(137\) 0.649130 0.893451i 0.0554589 0.0763326i −0.780387 0.625297i \(-0.784978\pi\)
0.835846 + 0.548964i \(0.184978\pi\)
\(138\) 0 0
\(139\) −3.06115 + 9.42125i −0.259643 + 0.799100i 0.733236 + 0.679974i \(0.238009\pi\)
−0.992879 + 0.119126i \(0.961991\pi\)
\(140\) 0 0
\(141\) −11.6202 + 8.44260i −0.978600 + 0.710995i
\(142\) 0 0
\(143\) −7.32222 + 2.52192i −0.612315 + 0.210894i
\(144\) 0 0
\(145\) 7.10990 + 5.91848i 0.590445 + 0.491503i
\(146\) 0 0
\(147\) 27.9179 + 9.07108i 2.30263 + 0.748170i
\(148\) 0 0
\(149\) 7.11314 + 5.16800i 0.582731 + 0.423379i 0.839708 0.543039i \(-0.182726\pi\)
−0.256977 + 0.966418i \(0.582726\pi\)
\(150\) 0 0
\(151\) −6.67177 20.5336i −0.542941 1.67100i −0.725835 0.687868i \(-0.758547\pi\)
0.182894 0.983133i \(-0.441453\pi\)
\(152\) 0 0
\(153\) 0.0233574i 0.00188833i
\(154\) 0 0
\(155\) −4.87770 19.2411i −0.391786 1.54548i
\(156\) 0 0
\(157\) 3.24760 1.05521i 0.259186 0.0842148i −0.176542 0.984293i \(-0.556491\pi\)
0.435728 + 0.900078i \(0.356491\pi\)
\(158\) 0 0
\(159\) −2.90847 2.11313i −0.230657 0.167582i
\(160\) 0 0
\(161\) −6.06657 + 18.6710i −0.478113 + 1.47148i
\(162\) 0 0
\(163\) 10.2336 + 14.0853i 0.801554 + 1.10324i 0.992572 + 0.121657i \(0.0388209\pi\)
−0.191019 + 0.981586i \(0.561179\pi\)
\(164\) 0 0
\(165\) 11.2198 + 4.25533i 0.873461 + 0.331277i
\(166\) 0 0
\(167\) −1.94321 2.67460i −0.150370 0.206967i 0.727186 0.686440i \(-0.240828\pi\)
−0.877556 + 0.479473i \(0.840828\pi\)
\(168\) 0 0
\(169\) 2.33237 7.17831i 0.179413 0.552178i
\(170\) 0 0
\(171\) 0.636930 + 0.462757i 0.0487073 + 0.0353879i
\(172\) 0 0
\(173\) −4.87758 + 1.58482i −0.370836 + 0.120492i −0.488505 0.872561i \(-0.662458\pi\)
0.117670 + 0.993053i \(0.462458\pi\)
\(174\) 0 0
\(175\) 11.9436 + 22.0432i 0.902855 + 1.66631i
\(176\) 0 0
\(177\) 3.13712i 0.235801i
\(178\) 0 0
\(179\) −4.46201 13.7327i −0.333507 1.02643i −0.967453 0.253051i \(-0.918566\pi\)
0.633947 0.773377i \(-0.281434\pi\)
\(180\) 0 0
\(181\) −9.63223 6.99822i −0.715958 0.520174i 0.169132 0.985593i \(-0.445903\pi\)
−0.885090 + 0.465419i \(0.845903\pi\)
\(182\) 0 0
\(183\) 14.9166 + 4.84669i 1.10267 + 0.358278i
\(184\) 0 0
\(185\) 6.51898 7.83128i 0.479285 0.575767i
\(186\) 0 0
\(187\) 0.122069 + 0.161963i 0.00892658 + 0.0118439i
\(188\) 0 0
\(189\) 22.1981 16.1279i 1.61467 1.17313i
\(190\) 0 0
\(191\) −3.25026 + 10.0033i −0.235181 + 0.723812i 0.761917 + 0.647675i \(0.224259\pi\)
−0.997097 + 0.0761369i \(0.975741\pi\)
\(192\) 0 0
\(193\) 2.86174 3.93885i 0.205993 0.283525i −0.693503 0.720453i \(-0.743934\pi\)
0.899496 + 0.436929i \(0.143934\pi\)
\(194\) 0 0
\(195\) 7.14680 4.50494i 0.511793 0.322606i
\(196\) 0 0
\(197\) 15.9760i 1.13824i 0.822253 + 0.569122i \(0.192717\pi\)
−0.822253 + 0.569122i \(0.807283\pi\)
\(198\) 0 0
\(199\) 16.7076 1.18437 0.592184 0.805803i \(-0.298266\pi\)
0.592184 + 0.805803i \(0.298266\pi\)
\(200\) 0 0
\(201\) 1.24787 + 3.84054i 0.0880177 + 0.270891i
\(202\) 0 0
\(203\) −12.1932 + 16.7825i −0.855797 + 1.17790i
\(204\) 0 0
\(205\) 10.2186 + 0.674234i 0.713701 + 0.0470906i
\(206\) 0 0
\(207\) 0.879029 + 1.20988i 0.0610967 + 0.0840924i
\(208\) 0 0
\(209\) −6.83501 + 0.119871i −0.472788 + 0.00829167i
\(210\) 0 0
\(211\) −12.7388 + 9.25526i −0.876974 + 0.637159i −0.932449 0.361301i \(-0.882333\pi\)
0.0554754 + 0.998460i \(0.482333\pi\)
\(212\) 0 0
\(213\) 13.5669 + 4.40815i 0.929589 + 0.302042i
\(214\) 0 0
\(215\) 7.51292 + 3.00114i 0.512377 + 0.204676i
\(216\) 0 0
\(217\) 42.3328 13.7548i 2.87374 0.933735i
\(218\) 0 0
\(219\) 8.73117 0.589998
\(220\) 0 0
\(221\) 0.142787 0.00960488
\(222\) 0 0
\(223\) 13.8432 4.49794i 0.927011 0.301204i 0.193671 0.981067i \(-0.437961\pi\)
0.733340 + 0.679862i \(0.237961\pi\)
\(224\) 0 0
\(225\) 1.89327 + 0.250932i 0.126218 + 0.0167288i
\(226\) 0 0
\(227\) −9.35512 3.03966i −0.620921 0.201749i −0.0183719 0.999831i \(-0.505848\pi\)
−0.602549 + 0.798082i \(0.705848\pi\)
\(228\) 0 0
\(229\) −12.5785 + 9.13881i −0.831210 + 0.603909i −0.919901 0.392150i \(-0.871732\pi\)
0.0886913 + 0.996059i \(0.471732\pi\)
\(230\) 0 0
\(231\) −7.86508 + 25.7331i −0.517484 + 1.69312i
\(232\) 0 0
\(233\) −15.2217 20.9509i −0.997206 1.37254i −0.927024 0.375002i \(-0.877642\pi\)
−0.0701824 0.997534i \(-0.522358\pi\)
\(234\) 0 0
\(235\) 1.30686 19.8067i 0.0852501 1.29204i
\(236\) 0 0
\(237\) 6.32947 8.71177i 0.411143 0.565890i
\(238\) 0 0
\(239\) 6.17911 + 19.0173i 0.399693 + 1.23013i 0.925246 + 0.379369i \(0.123859\pi\)
−0.525552 + 0.850761i \(0.676141\pi\)
\(240\) 0 0
\(241\) 9.01381 0.580630 0.290315 0.956931i \(-0.406240\pi\)
0.290315 + 0.956931i \(0.406240\pi\)
\(242\) 0 0
\(243\) 3.94427i 0.253025i
\(244\) 0 0
\(245\) −34.3181 + 21.6323i −2.19251 + 1.38203i
\(246\) 0 0
\(247\) −2.82890 + 3.89364i −0.179998 + 0.247747i
\(248\) 0 0
\(249\) −5.52599 + 17.0073i −0.350196 + 1.07779i
\(250\) 0 0
\(251\) 1.06115 0.770971i 0.0669792 0.0486632i −0.553792 0.832655i \(-0.686820\pi\)
0.620771 + 0.783992i \(0.286820\pi\)
\(252\) 0 0
\(253\) −12.4183 3.79554i −0.780734 0.238624i
\(254\) 0 0
\(255\) −0.170040 0.141546i −0.0106483 0.00886397i
\(256\) 0 0
\(257\) −4.24551 1.37945i −0.264827 0.0860477i 0.173594 0.984817i \(-0.444462\pi\)
−0.438421 + 0.898770i \(0.644462\pi\)
\(258\) 0 0
\(259\) 18.4853 + 13.4304i 1.14862 + 0.834522i
\(260\) 0 0
\(261\) 0.488321 + 1.50290i 0.0302263 + 0.0930271i
\(262\) 0 0
\(263\) 14.1791i 0.874320i −0.899384 0.437160i \(-0.855984\pi\)
0.899384 0.437160i \(-0.144016\pi\)
\(264\) 0 0
\(265\) 4.81592 1.22086i 0.295840 0.0749966i
\(266\) 0 0
\(267\) −9.37181 + 3.04508i −0.573545 + 0.186356i
\(268\) 0 0
\(269\) −25.8847 18.8063i −1.57822 1.14664i −0.918702 0.394952i \(-0.870761\pi\)
−0.659516 0.751691i \(-0.729239\pi\)
\(270\) 0 0
\(271\) −0.327988 + 1.00944i −0.0199238 + 0.0613192i −0.960524 0.278197i \(-0.910263\pi\)
0.940600 + 0.339516i \(0.110263\pi\)
\(272\) 0 0
\(273\) 11.1352 + 15.3262i 0.673931 + 0.927586i
\(274\) 0 0
\(275\) −14.4396 + 8.15454i −0.870744 + 0.491737i
\(276\) 0 0
\(277\) −3.89892 5.36641i −0.234264 0.322436i 0.675659 0.737214i \(-0.263859\pi\)
−0.909923 + 0.414778i \(0.863859\pi\)
\(278\) 0 0
\(279\) 1.04780 3.22478i 0.0627299 0.193063i
\(280\) 0 0
\(281\) −12.6582 9.19674i −0.755126 0.548631i 0.142285 0.989826i \(-0.454555\pi\)
−0.897412 + 0.441194i \(0.854555\pi\)
\(282\) 0 0
\(283\) 21.3993 6.95305i 1.27205 0.413316i 0.406280 0.913749i \(-0.366826\pi\)
0.865775 + 0.500433i \(0.166826\pi\)
\(284\) 0 0
\(285\) 7.22866 1.83249i 0.428189 0.108548i
\(286\) 0 0
\(287\) 22.9643i 1.35554i
\(288\) 0 0
\(289\) 5.25213 + 16.1644i 0.308949 + 0.950847i
\(290\) 0 0
\(291\) −9.55877 6.94485i −0.560345 0.407115i
\(292\) 0 0
\(293\) 17.2985 + 5.62063i 1.01059 + 0.328360i 0.767089 0.641540i \(-0.221704\pi\)
0.243500 + 0.969901i \(0.421704\pi\)
\(294\) 0 0
\(295\) 3.33203 + 2.77367i 0.193998 + 0.161490i
\(296\) 0 0
\(297\) 10.9236 + 14.4935i 0.633849 + 0.841001i
\(298\) 0 0
\(299\) −7.39616 + 5.37363i −0.427731 + 0.310765i
\(300\) 0 0
\(301\) −5.60604 + 17.2536i −0.323127 + 0.994482i
\(302\) 0 0
\(303\) 0.211013 0.290435i 0.0121224 0.0166850i
\(304\) 0 0
\(305\) −18.3362 + 11.5581i −1.04993 + 0.661817i
\(306\) 0 0
\(307\) 12.3820i 0.706676i −0.935496 0.353338i \(-0.885047\pi\)
0.935496 0.353338i \(-0.114953\pi\)
\(308\) 0 0
\(309\) −0.915880 −0.0521026
\(310\) 0 0
\(311\) −2.90784 8.94941i −0.164889 0.507475i 0.834140 0.551553i \(-0.185965\pi\)
−0.999028 + 0.0440788i \(0.985965\pi\)
\(312\) 0 0
\(313\) −8.95297 + 12.3227i −0.506052 + 0.696520i −0.983247 0.182277i \(-0.941653\pi\)
0.477196 + 0.878797i \(0.341653\pi\)
\(314\) 0 0
\(315\) −0.281959 + 4.27334i −0.0158866 + 0.240776i
\(316\) 0 0
\(317\) 7.90964 + 10.8867i 0.444250 + 0.611457i 0.971150 0.238470i \(-0.0766459\pi\)
−0.526900 + 0.849927i \(0.676646\pi\)
\(318\) 0 0
\(319\) −11.2405 7.86928i −0.629346 0.440595i
\(320\) 0 0
\(321\) 2.91913 2.12087i 0.162930 0.118376i
\(322\) 0 0
\(323\) 0.119871 + 0.0389485i 0.00666982 + 0.00216715i
\(324\) 0 0
\(325\) −1.53398 + 11.5738i −0.0850900 + 0.642001i
\(326\) 0 0
\(327\) −12.0997 + 3.93144i −0.669116 + 0.217409i
\(328\) 0 0
\(329\) 44.5114 2.45399
\(330\) 0 0
\(331\) 3.82236 0.210096 0.105048 0.994467i \(-0.466500\pi\)
0.105048 + 0.994467i \(0.466500\pi\)
\(332\) 0 0
\(333\) 1.65538 0.537867i 0.0907145 0.0294749i
\(334\) 0 0
\(335\) −5.18244 2.07020i −0.283147 0.113107i
\(336\) 0 0
\(337\) −9.00338 2.92538i −0.490445 0.159355i 0.0533455 0.998576i \(-0.483012\pi\)
−0.543791 + 0.839221i \(0.683012\pi\)
\(338\) 0 0
\(339\) 16.4434 11.9469i 0.893086 0.648865i
\(340\) 0 0
\(341\) 9.58765 + 27.8371i 0.519201 + 1.50746i
\(342\) 0 0
\(343\) −32.8390 45.1989i −1.77314 2.44051i
\(344\) 0 0
\(345\) 14.1348 + 0.932624i 0.760991 + 0.0502108i
\(346\) 0 0
\(347\) 9.72341 13.3831i 0.521980 0.718444i −0.463902 0.885887i \(-0.653551\pi\)
0.985882 + 0.167443i \(0.0535510\pi\)
\(348\) 0 0
\(349\) −9.03161 27.7964i −0.483451 1.48791i −0.834212 0.551444i \(-0.814077\pi\)
0.350761 0.936465i \(-0.385923\pi\)
\(350\) 0 0
\(351\) 12.7775 0.682012
\(352\) 0 0
\(353\) 27.9200i 1.48603i −0.669272 0.743017i \(-0.733394\pi\)
0.669272 0.743017i \(-0.266606\pi\)
\(354\) 0 0
\(355\) −16.6771 + 10.5123i −0.885131 + 0.557937i
\(356\) 0 0
\(357\) 0.291613 0.401371i 0.0154338 0.0212428i
\(358\) 0 0
\(359\) 5.25768 16.1815i 0.277490 0.854025i −0.711060 0.703131i \(-0.751785\pi\)
0.988550 0.150894i \(-0.0482152\pi\)
\(360\) 0 0
\(361\) 11.9343 8.67081i 0.628123 0.456358i
\(362\) 0 0
\(363\) −17.1097 4.90307i −0.898027 0.257344i
\(364\) 0 0
\(365\) −7.71963 + 9.27363i −0.404064 + 0.485404i
\(366\) 0 0
\(367\) 27.9983 + 9.09719i 1.46150 + 0.474870i 0.928527 0.371264i \(-0.121075\pi\)
0.532971 + 0.846133i \(0.321075\pi\)
\(368\) 0 0
\(369\) 1.41525 + 1.02824i 0.0736751 + 0.0535281i
\(370\) 0 0
\(371\) 3.44273 + 10.5956i 0.178738 + 0.550098i
\(372\) 0 0
\(373\) 16.0743i 0.832297i −0.909297 0.416149i \(-0.863380\pi\)
0.909297 0.416149i \(-0.136620\pi\)
\(374\) 0 0
\(375\) 13.3000 12.2623i 0.686812 0.633220i
\(376\) 0 0
\(377\) −9.18743 + 2.98518i −0.473177 + 0.153744i
\(378\) 0 0
\(379\) −14.6618 10.6524i −0.753125 0.547178i 0.143669 0.989626i \(-0.454110\pi\)
−0.896794 + 0.442448i \(0.854110\pi\)
\(380\) 0 0
\(381\) 7.23149 22.2562i 0.370480 1.14022i
\(382\) 0 0
\(383\) 7.76587 + 10.6888i 0.396817 + 0.546172i 0.959942 0.280200i \(-0.0904008\pi\)
−0.563124 + 0.826372i \(0.690401\pi\)
\(384\) 0 0
\(385\) −20.3780 31.1056i −1.03856 1.58529i
\(386\) 0 0
\(387\) 0.812299 + 1.11803i 0.0412915 + 0.0568329i
\(388\) 0 0
\(389\) 8.19653 25.2263i 0.415580 1.27902i −0.496150 0.868237i \(-0.665254\pi\)
0.911731 0.410788i \(-0.134746\pi\)
\(390\) 0 0
\(391\) 0.193694 + 0.140727i 0.00979553 + 0.00711687i
\(392\) 0 0
\(393\) −23.5837 + 7.66280i −1.18964 + 0.386537i
\(394\) 0 0
\(395\) 3.65684 + 14.4252i 0.183996 + 0.725810i
\(396\) 0 0
\(397\) 30.3246i 1.52195i −0.648783 0.760974i \(-0.724722\pi\)
0.648783 0.760974i \(-0.275278\pi\)
\(398\) 0 0
\(399\) 5.16751 + 15.9039i 0.258699 + 0.796193i
\(400\) 0 0
\(401\) −15.7565 11.4478i −0.786844 0.571676i 0.120181 0.992752i \(-0.461652\pi\)
−0.907025 + 0.421076i \(0.861652\pi\)
\(402\) 0 0
\(403\) 19.7136 + 6.40532i 0.982002 + 0.319072i
\(404\) 0 0
\(405\) −13.2470 11.0272i −0.658249 0.547945i
\(406\) 0 0
\(407\) −8.66771 + 12.3809i −0.429642 + 0.613701i
\(408\) 0 0
\(409\) −22.9197 + 16.6521i −1.13330 + 0.823394i −0.986172 0.165723i \(-0.947004\pi\)
−0.147132 + 0.989117i \(0.547004\pi\)
\(410\) 0 0
\(411\) 0.552183 1.69944i 0.0272372 0.0838274i
\(412\) 0 0
\(413\) −5.71431 + 7.86508i −0.281183 + 0.387015i
\(414\) 0 0
\(415\) −13.1781 20.9062i −0.646888 1.02625i
\(416\) 0 0
\(417\) 16.0284i 0.784914i
\(418\) 0 0
\(419\) −15.4826 −0.756374 −0.378187 0.925729i \(-0.623452\pi\)
−0.378187 + 0.925729i \(0.623452\pi\)
\(420\) 0 0
\(421\) 6.63964 + 20.4347i 0.323596 + 0.995927i 0.972070 + 0.234690i \(0.0754076\pi\)
−0.648474 + 0.761237i \(0.724592\pi\)
\(422\) 0 0
\(423\) 1.99303 2.74317i 0.0969043 0.133377i
\(424\) 0 0
\(425\) 0.300680 0.0554570i 0.0145851 0.00269006i
\(426\) 0 0
\(427\) −28.5690 39.3219i −1.38255 1.90292i
\(428\) 0 0
\(429\) −10.0068 + 7.54195i −0.483132 + 0.364129i
\(430\) 0 0
\(431\) 21.3896 15.5404i 1.03030 0.748557i 0.0619316 0.998080i \(-0.480274\pi\)
0.968369 + 0.249523i \(0.0802739\pi\)
\(432\) 0 0
\(433\) 31.2725 + 10.1611i 1.50286 + 0.488309i 0.940851 0.338821i \(-0.110028\pi\)
0.562010 + 0.827130i \(0.310028\pi\)
\(434\) 0 0
\(435\) 13.9002 + 5.55265i 0.666466 + 0.266229i
\(436\) 0 0
\(437\) −7.67495 + 2.49374i −0.367143 + 0.119292i
\(438\) 0 0
\(439\) −12.1796 −0.581299 −0.290649 0.956830i \(-0.593871\pi\)
−0.290649 + 0.956830i \(0.593871\pi\)
\(440\) 0 0
\(441\) −6.92969 −0.329985
\(442\) 0 0
\(443\) −15.7961 + 5.13247i −0.750496 + 0.243851i −0.659195 0.751972i \(-0.729103\pi\)
−0.0913015 + 0.995823i \(0.529103\pi\)
\(444\) 0 0
\(445\) 5.05177 12.6464i 0.239477 0.599495i
\(446\) 0 0
\(447\) 13.5300 + 4.39616i 0.639947 + 0.207931i
\(448\) 0 0
\(449\) −4.33928 + 3.15267i −0.204783 + 0.148784i −0.685450 0.728119i \(-0.740395\pi\)
0.480667 + 0.876903i \(0.340395\pi\)
\(450\) 0 0
\(451\) −15.1873 + 0.266353i −0.715143 + 0.0125421i
\(452\) 0 0
\(453\) −20.5336 28.2621i −0.964753 1.32787i
\(454\) 0 0
\(455\) −26.1235 1.72365i −1.22469 0.0808061i
\(456\) 0 0
\(457\) 2.12330 2.92247i 0.0993237 0.136707i −0.756462 0.654037i \(-0.773074\pi\)
0.855786 + 0.517330i \(0.173074\pi\)
\(458\) 0 0
\(459\) −0.103404 0.318246i −0.00482650 0.0148544i
\(460\) 0 0
\(461\) −40.6625 −1.89384 −0.946922 0.321464i \(-0.895825\pi\)
−0.946922 + 0.321464i \(0.895825\pi\)
\(462\) 0 0
\(463\) 2.11880i 0.0984690i 0.998787 + 0.0492345i \(0.0156782\pi\)
−0.998787 + 0.0492345i \(0.984322\pi\)
\(464\) 0 0
\(465\) −17.1266 27.1702i −0.794225 1.25999i
\(466\) 0 0
\(467\) −8.08494 + 11.1280i −0.374126 + 0.514941i −0.954017 0.299754i \(-0.903095\pi\)
0.579890 + 0.814695i \(0.303095\pi\)
\(468\) 0 0
\(469\) 3.86707 11.9016i 0.178565 0.549565i
\(470\) 0 0
\(471\) 4.46993 3.24760i 0.205964 0.149641i
\(472\) 0 0
\(473\) −11.4756 3.50741i −0.527650 0.161271i
\(474\) 0 0
\(475\) −4.44484 + 9.29795i −0.203943 + 0.426619i
\(476\) 0 0
\(477\) 0.807142 + 0.262256i 0.0369565 + 0.0120079i
\(478\) 0 0
\(479\) −25.4118 18.4628i −1.16110 0.843586i −0.171180 0.985240i \(-0.554758\pi\)
−0.989916 + 0.141654i \(0.954758\pi\)
\(480\) 0 0
\(481\) 3.28806 + 10.1196i 0.149922 + 0.461414i
\(482\) 0 0
\(483\) 31.7650i 1.44536i
\(484\) 0 0
\(485\) 15.8277 4.01238i 0.718698 0.182193i
\(486\) 0 0
\(487\) 7.14274 2.32082i 0.323668 0.105166i −0.142676 0.989769i \(-0.545571\pi\)
0.466344 + 0.884603i \(0.345571\pi\)
\(488\) 0 0
\(489\) 22.7905 + 16.5582i 1.03062 + 0.748789i
\(490\) 0 0
\(491\) −3.48008 + 10.7106i −0.157054 + 0.483361i −0.998363 0.0571923i \(-0.981785\pi\)
0.841310 + 0.540554i \(0.181785\pi\)
\(492\) 0 0
\(493\) 0.148702 + 0.204671i 0.00669719 + 0.00921790i
\(494\) 0 0
\(495\) −2.82943 0.136907i −0.127173 0.00615353i
\(496\) 0 0
\(497\) −25.9840 35.7640i −1.16554 1.60423i
\(498\) 0 0
\(499\) −8.33753 + 25.6603i −0.373239 + 1.14871i 0.571420 + 0.820658i \(0.306393\pi\)
−0.944659 + 0.328054i \(0.893607\pi\)
\(500\) 0 0
\(501\) −4.32760 3.14419i −0.193343 0.140472i
\(502\) 0 0
\(503\) −30.5818 + 9.93662i −1.36357 + 0.443052i −0.897235 0.441554i \(-0.854427\pi\)
−0.466339 + 0.884606i \(0.654427\pi\)
\(504\) 0 0
\(505\) 0.121913 + 0.480909i 0.00542504 + 0.0214002i
\(506\) 0 0
\(507\) 12.2125i 0.542375i
\(508\) 0 0
\(509\) −3.64048 11.2043i −0.161362 0.496620i 0.837388 0.546609i \(-0.184081\pi\)
−0.998750 + 0.0499888i \(0.984081\pi\)
\(510\) 0 0
\(511\) −21.8899 15.9039i −0.968352 0.703549i
\(512\) 0 0
\(513\) 10.7269 + 3.48537i 0.473603 + 0.153883i
\(514\) 0 0
\(515\) 0.809772 0.972783i 0.0356828 0.0428659i
\(516\) 0 0
\(517\) 0.516268 + 29.4374i 0.0227054 + 1.29465i
\(518\) 0 0
\(519\) −6.71341 + 4.87758i −0.294686 + 0.214102i
\(520\) 0 0
\(521\) 0.718847 2.21238i 0.0314933 0.0969263i −0.934074 0.357079i \(-0.883773\pi\)
0.965568 + 0.260152i \(0.0837728\pi\)
\(522\) 0 0
\(523\) −0.901612 + 1.24096i −0.0394248 + 0.0542635i −0.828274 0.560323i \(-0.810677\pi\)
0.788850 + 0.614586i \(0.210677\pi\)
\(524\) 0 0
\(525\) 29.4010 + 27.9492i 1.28316 + 1.21980i
\(526\) 0 0
\(527\) 0.542836i 0.0236463i
\(528\) 0 0
\(529\) 7.67080 0.333513
\(530\) 0 0
\(531\) 0.228850 + 0.704328i 0.00993125 + 0.0305652i
\(532\) 0 0
\(533\) −6.28578 + 8.65163i −0.272267 + 0.374744i
\(534\) 0 0
\(535\) −0.328298 + 4.97565i −0.0141935 + 0.215116i
\(536\) 0 0
\(537\) −13.7327 18.9014i −0.592608 0.815655i
\(538\) 0 0
\(539\) 48.0515 36.2156i 2.06972 1.55992i
\(540\) 0 0
\(541\) 12.4927 9.07650i 0.537104 0.390229i −0.285904 0.958258i \(-0.592294\pi\)
0.823008 + 0.568029i \(0.192294\pi\)
\(542\) 0 0
\(543\) −18.3216 5.95305i −0.786255 0.255470i
\(544\) 0 0
\(545\) 6.52222 16.3274i 0.279381 0.699390i
\(546\) 0 0
\(547\) 10.1261 3.29017i 0.432960 0.140677i −0.0844251 0.996430i \(-0.526905\pi\)
0.517385 + 0.855752i \(0.326905\pi\)
\(548\) 0 0
\(549\) −3.70254 −0.158021
\(550\) 0 0
\(551\) −8.52724 −0.363272
\(552\) 0 0
\(553\) −31.7372 + 10.3120i −1.34960 + 0.438513i
\(554\) 0 0
\(555\) 6.11603 15.3106i 0.259611 0.649898i
\(556\) 0 0
\(557\) −32.2595 10.4818i −1.36688 0.444126i −0.468545 0.883439i \(-0.655222\pi\)
−0.898334 + 0.439313i \(0.855222\pi\)
\(558\) 0 0
\(559\) −6.83470 + 4.96570i −0.289077 + 0.210027i
\(560\) 0 0
\(561\) 0.268827 + 0.188201i 0.0113499 + 0.00794587i
\(562\) 0 0
\(563\) 0.789857 + 1.08714i 0.0332885 + 0.0458177i 0.825337 0.564641i \(-0.190985\pi\)
−0.792048 + 0.610458i \(0.790985\pi\)
\(564\) 0 0
\(565\) −1.84930 + 28.0278i −0.0778006 + 1.17914i
\(566\) 0 0
\(567\) 22.7182 31.2689i 0.954073 1.31317i
\(568\) 0 0
\(569\) 9.70595 + 29.8718i 0.406894 + 1.25229i 0.919303 + 0.393550i \(0.128753\pi\)
−0.512409 + 0.858742i \(0.671247\pi\)
\(570\) 0 0
\(571\) −9.25361 −0.387252 −0.193626 0.981075i \(-0.562025\pi\)
−0.193626 + 0.981075i \(0.562025\pi\)
\(572\) 0 0
\(573\) 17.0186i 0.710962i
\(574\) 0 0
\(575\) −13.4878 + 14.1884i −0.562479 + 0.591696i
\(576\) 0 0
\(577\) −25.4998 + 35.0975i −1.06157 + 1.46113i −0.183244 + 0.983068i \(0.558660\pi\)
−0.878327 + 0.478060i \(0.841340\pi\)
\(578\) 0 0
\(579\) 2.43434 7.49214i 0.101168 0.311363i
\(580\) 0 0
\(581\) 44.8332 32.5732i 1.85999 1.35136i
\(582\) 0 0
\(583\) −6.96744 + 2.39973i −0.288562 + 0.0993865i
\(584\) 0 0
\(585\) −1.27592 + 1.53277i −0.0527530 + 0.0633724i
\(586\) 0 0
\(587\) −3.05524 0.992708i −0.126103 0.0409734i 0.245285 0.969451i \(-0.421118\pi\)
−0.371389 + 0.928477i \(0.621118\pi\)
\(588\) 0 0
\(589\) 14.8026 + 10.7547i 0.609929 + 0.443139i
\(590\) 0 0
\(591\) 7.98801 + 24.5846i 0.328583 + 1.01127i
\(592\) 0 0
\(593\) 0.0315027i 0.00129366i 1.00000 0.000646829i \(0.000205892\pi\)
−1.00000 0.000646829i \(0.999794\pi\)
\(594\) 0 0
\(595\) 0.168479 + 0.664600i 0.00690696 + 0.0272460i
\(596\) 0 0
\(597\) 25.7103 8.35379i 1.05225 0.341898i
\(598\) 0 0
\(599\) 8.50993 + 6.18283i 0.347706 + 0.252623i 0.747906 0.663804i \(-0.231059\pi\)
−0.400200 + 0.916428i \(0.631059\pi\)
\(600\) 0 0
\(601\) 7.45305 22.9381i 0.304016 0.935665i −0.676026 0.736877i \(-0.736300\pi\)
0.980043 0.198788i \(-0.0637005\pi\)
\(602\) 0 0
\(603\) −0.560327 0.771224i −0.0228183 0.0314067i
\(604\) 0 0
\(605\) 20.3352 13.8377i 0.826742 0.562582i
\(606\) 0 0
\(607\) −1.46340 2.01420i −0.0593975 0.0817537i 0.778285 0.627911i \(-0.216090\pi\)
−0.837682 + 0.546158i \(0.816090\pi\)
\(608\) 0 0
\(609\) −10.3722 + 31.9223i −0.420302 + 1.29356i
\(610\) 0 0
\(611\) 16.7694 + 12.1836i 0.678415 + 0.492898i
\(612\) 0 0
\(613\) 35.7338 11.6106i 1.44328 0.468949i 0.520359 0.853948i \(-0.325798\pi\)
0.922917 + 0.384999i \(0.125798\pi\)
\(614\) 0 0
\(615\) 16.0620 4.07178i 0.647682 0.164190i
\(616\) 0 0
\(617\) 45.5803i 1.83499i 0.397744 + 0.917496i \(0.369793\pi\)
−0.397744 + 0.917496i \(0.630207\pi\)
\(618\) 0 0
\(619\) 1.77382 + 5.45924i 0.0712957 + 0.219425i 0.980355 0.197241i \(-0.0631982\pi\)
−0.909059 + 0.416667i \(0.863198\pi\)
\(620\) 0 0
\(621\) 17.3330 + 12.5932i 0.695550 + 0.505347i
\(622\) 0 0
\(623\) 29.0427 + 9.43655i 1.16357 + 0.378067i
\(624\) 0 0
\(625\) 1.26491 + 24.9680i 0.0505964 + 0.998719i
\(626\) 0 0
\(627\) −10.4581 + 3.60197i −0.417655 + 0.143849i
\(628\) 0 0
\(629\) 0.225437 0.163789i 0.00898875 0.00653071i
\(630\) 0 0
\(631\) −3.70103 + 11.3906i −0.147336 + 0.453453i −0.997304 0.0733811i \(-0.976621\pi\)
0.849968 + 0.526834i \(0.176621\pi\)
\(632\) 0 0
\(633\) −14.9753 + 20.6118i −0.595216 + 0.819245i
\(634\) 0 0
\(635\) 17.2453 + 27.3585i 0.684358 + 1.08569i
\(636\) 0 0
\(637\) 42.3621i 1.67845i
\(638\) 0 0
\(639\) −3.36753 −0.133217
\(640\) 0 0
\(641\) −10.8526 33.4007i −0.428650 1.31925i −0.899455 0.437013i \(-0.856036\pi\)
0.470805 0.882237i \(-0.343964\pi\)
\(642\) 0 0
\(643\) −20.9529 + 28.8392i −0.826302 + 1.13731i 0.162298 + 0.986742i \(0.448109\pi\)
−0.988600 + 0.150565i \(0.951891\pi\)
\(644\) 0 0
\(645\) 13.0618 + 0.861826i 0.514307 + 0.0339344i
\(646\) 0 0
\(647\) 11.8476 + 16.3068i 0.465778 + 0.641088i 0.975694 0.219136i \(-0.0703238\pi\)
−0.509917 + 0.860224i \(0.670324\pi\)
\(648\) 0 0
\(649\) −5.26781 3.68791i −0.206780 0.144763i
\(650\) 0 0
\(651\) 58.2661 42.3328i 2.28363 1.65915i
\(652\) 0 0
\(653\) −23.1905 7.53504i −0.907513 0.294869i −0.182178 0.983266i \(-0.558315\pi\)
−0.725334 + 0.688397i \(0.758315\pi\)
\(654\) 0 0
\(655\) 12.7125 31.8239i 0.496720 1.24346i
\(656\) 0 0
\(657\) −1.96027 + 0.636930i −0.0764774 + 0.0248490i
\(658\) 0 0
\(659\) −6.98788 −0.272209 −0.136104 0.990694i \(-0.543458\pi\)
−0.136104 + 0.990694i \(0.543458\pi\)
\(660\) 0 0
\(661\) −3.61827 −0.140735 −0.0703673 0.997521i \(-0.522417\pi\)
−0.0703673 + 0.997521i \(0.522417\pi\)
\(662\) 0 0
\(663\) 0.219726 0.0713934i 0.00853346 0.00277269i
\(664\) 0 0
\(665\) −21.4609 8.57285i −0.832216 0.332441i
\(666\) 0 0
\(667\) −15.4051 5.00542i −0.596488 0.193811i
\(668\) 0 0
\(669\) 19.0536 13.8432i 0.736653 0.535210i
\(670\) 0 0
\(671\) 25.6740 19.3501i 0.991133 0.747001i
\(672\) 0 0
\(673\) 4.68377 + 6.44665i 0.180546 + 0.248500i 0.889692 0.456562i \(-0.150919\pi\)
−0.709146 + 0.705062i \(0.750919\pi\)
\(674\) 0 0
\(675\) 26.9069 4.96266i 1.03565 0.191013i
\(676\) 0 0
\(677\) 8.48443 11.6778i 0.326083 0.448815i −0.614229 0.789128i \(-0.710533\pi\)
0.940312 + 0.340313i \(0.110533\pi\)
\(678\) 0 0
\(679\) 11.3146 + 34.8229i 0.434216 + 1.33638i
\(680\) 0 0
\(681\) −15.9159 −0.609898
\(682\) 0 0
\(683\) 29.6723i 1.13538i −0.823242 0.567690i \(-0.807837\pi\)
0.823242 0.567690i \(-0.192163\pi\)
\(684\) 0 0
\(685\) 1.31682 + 2.08904i 0.0503130 + 0.0798183i
\(686\) 0 0
\(687\) −14.7869 + 20.3524i −0.564156 + 0.776493i
\(688\) 0 0
\(689\) −1.60321 + 4.93417i −0.0610774 + 0.187977i
\(690\) 0 0
\(691\) 26.1812 19.0218i 0.995980 0.723622i 0.0347577 0.999396i \(-0.488934\pi\)
0.961223 + 0.275774i \(0.0889341\pi\)
\(692\) 0 0
\(693\) −0.111386 6.35120i −0.00423121 0.241262i
\(694\) 0 0
\(695\) −17.0242 14.1714i −0.645765 0.537553i
\(696\) 0 0
\(697\) 0.266353 + 0.0865432i 0.0100888 + 0.00327806i
\(698\) 0 0
\(699\) −33.8992 24.6292i −1.28219 0.931562i
\(700\) 0 0
\(701\) 5.86089 + 18.0380i 0.221363 + 0.681284i 0.998640 + 0.0521266i \(0.0165999\pi\)
−0.777278 + 0.629157i \(0.783400\pi\)
\(702\) 0 0
\(703\) 9.39242i 0.354242i
\(704\) 0 0
\(705\) −7.89228 31.1328i −0.297241 1.17253i
\(706\) 0 0
\(707\) −1.05806 + 0.343785i −0.0397925 + 0.0129294i
\(708\) 0 0
\(709\) 6.78617 + 4.93044i 0.254860 + 0.185167i 0.707878 0.706335i \(-0.249653\pi\)
−0.453018 + 0.891501i \(0.649653\pi\)
\(710\) 0 0
\(711\) −0.785540 + 2.41764i −0.0294600 + 0.0906687i
\(712\) 0 0
\(713\) 20.4290 + 28.1182i 0.765074 + 1.05303i
\(714\) 0 0
\(715\) 0.836934 17.2967i 0.0312995 0.646859i
\(716\) 0 0
\(717\) 19.0173 + 26.1751i 0.710216 + 0.977528i
\(718\) 0 0
\(719\) 2.33218 7.17771i 0.0869756 0.267684i −0.898104 0.439783i \(-0.855055\pi\)
0.985079 + 0.172100i \(0.0550552\pi\)
\(720\) 0 0
\(721\) 2.29620 + 1.66829i 0.0855150 + 0.0621303i
\(722\) 0 0
\(723\) 13.8708 4.50690i 0.515861 0.167614i
\(724\) 0 0
\(725\) −18.1875 + 9.85449i −0.675466 + 0.365987i
\(726\) 0 0
\(727\) 24.2826i 0.900593i 0.892879 + 0.450297i \(0.148682\pi\)
−0.892879 + 0.450297i \(0.851318\pi\)
\(728\) 0 0
\(729\) −9.11803 28.0624i −0.337705 1.03935i
\(730\) 0 0
\(731\) 0.178990 + 0.130044i 0.00662019 + 0.00480985i
\(732\) 0 0
\(733\) 20.3541 + 6.61345i 0.751796 + 0.244273i 0.659754 0.751482i \(-0.270660\pi\)
0.0920424 + 0.995755i \(0.470660\pi\)
\(734\) 0 0
\(735\) −41.9941 + 50.4477i −1.54897 + 1.86079i
\(736\) 0 0
\(737\) 7.91593 + 2.41943i 0.291587 + 0.0891207i
\(738\) 0 0
\(739\) −28.4419 + 20.6642i −1.04625 + 0.760147i −0.971496 0.237055i \(-0.923818\pi\)
−0.0747558 + 0.997202i \(0.523818\pi\)
\(740\) 0 0
\(741\) −2.40640 + 7.40615i −0.0884015 + 0.272072i
\(742\) 0 0
\(743\) 20.0435 27.5875i 0.735324 1.01209i −0.263550 0.964646i \(-0.584893\pi\)
0.998874 0.0474407i \(-0.0151065\pi\)
\(744\) 0 0
\(745\) −16.6318 + 10.4837i −0.609341 + 0.384095i
\(746\) 0 0
\(747\) 4.22148i 0.154456i
\(748\) 0 0
\(749\) −11.1817 −0.408572
\(750\) 0 0
\(751\) 11.0690 + 34.0669i 0.403914 + 1.24312i 0.921799 + 0.387669i \(0.126720\pi\)
−0.517884 + 0.855451i \(0.673280\pi\)
\(752\) 0 0
\(753\) 1.24746 1.71698i 0.0454599 0.0625701i
\(754\) 0 0
\(755\) 48.1727 + 3.17847i 1.75318 + 0.115676i
\(756\) 0 0
\(757\) 14.2408 + 19.6008i 0.517592 + 0.712404i 0.985176 0.171544i \(-0.0548756\pi\)
−0.467584 + 0.883948i \(0.654876\pi\)
\(758\) 0 0
\(759\) −21.0076 + 0.368428i −0.762528 + 0.0133731i
\(760\) 0 0
\(761\) −8.62191 + 6.26419i −0.312544 + 0.227077i −0.732987 0.680242i \(-0.761875\pi\)
0.420443 + 0.907319i \(0.361875\pi\)
\(762\) 0 0
\(763\) 37.4964 + 12.1833i 1.35746 + 0.441065i
\(764\) 0 0
\(765\) 0.0485020 + 0.0193748i 0.00175359 + 0.000700499i
\(766\) 0 0
\(767\) −4.30566 + 1.39899i −0.155468 + 0.0505147i
\(768\) 0 0
\(769\) −25.8297 −0.931444 −0.465722 0.884931i \(-0.654205\pi\)
−0.465722 + 0.884931i \(0.654205\pi\)
\(770\) 0 0
\(771\) −7.22289 −0.260126
\(772\) 0 0
\(773\) 11.4679 3.72614i 0.412471 0.134020i −0.0954286 0.995436i \(-0.530422\pi\)
0.507899 + 0.861416i \(0.330422\pi\)
\(774\) 0 0
\(775\) 44.0006 + 5.83177i 1.58055 + 0.209484i
\(776\) 0 0
\(777\) 35.1612 + 11.4246i 1.26140 + 0.409854i
\(778\) 0 0
\(779\) −7.63693 + 5.54855i −0.273621 + 0.198798i
\(780\) 0 0
\(781\) 23.3510 17.5992i 0.835563 0.629750i
\(782\) 0 0
\(783\) 13.3068 + 18.3153i 0.475547 + 0.654534i
\(784\) 0 0
\(785\) −0.502707 + 7.61899i −0.0179424 + 0.271933i
\(786\) 0 0
\(787\) −10.6725 + 14.6895i −0.380435 + 0.523624i −0.955700 0.294343i \(-0.904899\pi\)
0.575265 + 0.817967i \(0.304899\pi\)
\(788\) 0 0
\(789\) −7.08954 21.8194i −0.252394 0.776790i
\(790\) 0 0
\(791\) −62.9867 −2.23955
\(792\) 0 0
\(793\) 22.6342i 0.803762i
\(794\) 0 0
\(795\) 6.80051 4.28666i 0.241189 0.152032i
\(796\) 0 0
\(797\) −0.946725 + 1.30306i −0.0335347 + 0.0461566i −0.825455 0.564468i \(-0.809081\pi\)
0.791920 + 0.610624i \(0.209081\pi\)
\(798\) 0 0
\(799\) 0.167746 0.516268i 0.00593441 0.0182642i
\(800\) 0 0
\(801\) 1.88197 1.36733i 0.0664960 0.0483122i
\(802\) 0 0
\(803\) 10.2641 14.6612i 0.362213 0.517384i
\(804\) 0 0
\(805\) −33.7385 28.0849i −1.18913 0.989862i
\(806\) 0 0
\(807\) −49.2356 15.9976i −1.73318 0.563143i
\(808\) 0 0
\(809\) 20.7273 + 15.0593i 0.728733 + 0.529455i 0.889162 0.457592i \(-0.151288\pi\)
−0.160429 + 0.987047i \(0.551288\pi\)
\(810\) 0 0
\(811\) −13.5506 41.7045i −0.475827 1.46444i −0.844839 0.535020i \(-0.820304\pi\)
0.369012 0.929424i \(-0.379696\pi\)
\(812\) 0 0
\(813\) 1.71737i 0.0602306i
\(814\) 0 0
\(815\) −37.7370 + 9.56650i −1.32187 + 0.335100i
\(816\) 0 0
\(817\) −7.09233 + 2.30444i −0.248129 + 0.0806220i
\(818\) 0 0
\(819\) −3.61803 2.62866i −0.126424 0.0918527i
\(820\) 0 0
\(821\) −5.43938 + 16.7407i −0.189836 + 0.584254i −0.999998 0.00195152i \(-0.999379\pi\)
0.810163 + 0.586205i \(0.199379\pi\)
\(822\) 0 0
\(823\) −7.43854 10.2383i −0.259291 0.356884i 0.659447 0.751751i \(-0.270791\pi\)
−0.918738 + 0.394867i \(0.870791\pi\)
\(824\) 0 0
\(825\) −18.1431 + 19.7684i −0.631660 + 0.688246i
\(826\) 0 0
\(827\) −5.19856 7.15520i −0.180772 0.248811i 0.709009 0.705200i \(-0.249143\pi\)
−0.889780 + 0.456389i \(0.849143\pi\)
\(828\) 0 0
\(829\) −11.6571 + 35.8767i −0.404866 + 1.24605i 0.516141 + 0.856504i \(0.327368\pi\)
−0.921007 + 0.389546i \(0.872632\pi\)
\(830\) 0 0
\(831\) −8.68303 6.30859i −0.301211 0.218843i
\(832\) 0 0
\(833\) −1.05510 + 0.342823i −0.0365571 + 0.0118781i
\(834\) 0 0
\(835\) 7.16576 1.81655i 0.247981 0.0628643i
\(836\) 0 0
\(837\) 48.5765i 1.67905i
\(838\) 0 0
\(839\) −11.8934 36.6041i −0.410606 1.26372i −0.916123 0.400898i \(-0.868698\pi\)
0.505517 0.862817i \(-0.331302\pi\)
\(840\) 0 0
\(841\) 9.61452 + 6.98536i 0.331535 + 0.240874i
\(842\) 0 0
\(843\) −24.0774 7.82321i −0.829269 0.269446i
\(844\) 0 0
\(845\) 12.9712 + 10.7976i 0.446223 + 0.371449i
\(846\) 0 0
\(847\) 33.9647 + 43.4580i 1.16704 + 1.49324i
\(848\) 0 0
\(849\) 29.4536 21.3993i 1.01084 0.734421i
\(850\) 0 0
\(851\) −5.51328 + 16.9681i −0.188993 + 0.581660i
\(852\) 0 0
\(853\) 29.9122 41.1706i 1.02417 1.40965i 0.114936 0.993373i \(-0.463334\pi\)
0.909237 0.416280i \(-0.136666\pi\)
\(854\) 0 0
\(855\) −1.48926 + 0.938744i −0.0509315 + 0.0321044i
\(856\) 0 0
\(857\) 11.5197i 0.393506i −0.980453 0.196753i \(-0.936960\pi\)
0.980453 0.196753i \(-0.0630397\pi\)
\(858\) 0 0
\(859\) 23.9497 0.817153 0.408577 0.912724i \(-0.366025\pi\)
0.408577 + 0.912724i \(0.366025\pi\)
\(860\) 0 0
\(861\) 11.4821 + 35.3384i 0.391310 + 1.20433i
\(862\) 0 0
\(863\) 23.5170 32.3684i 0.800530 1.10183i −0.192187 0.981358i \(-0.561558\pi\)
0.992716 0.120476i \(-0.0384421\pi\)
\(864\) 0 0
\(865\) 0.755018 11.4430i 0.0256714 0.389074i
\(866\) 0 0
\(867\) 16.1644 + 22.2484i 0.548972 + 0.755595i
\(868\) 0 0
\(869\) −7.18793 20.8696i −0.243834 0.707954i
\(870\) 0 0
\(871\) 4.71460 3.42536i 0.159748 0.116064i
\(872\) 0 0
\(873\) 2.65270 + 0.861914i 0.0897802 + 0.0291714i
\(874\) 0 0
\(875\) −55.6804 + 6.51646i −1.88234 + 0.220297i
\(876\) 0 0
\(877\) −24.7104 + 8.02891i −0.834413 + 0.271117i −0.694903 0.719104i \(-0.744553\pi\)
−0.139510 + 0.990221i \(0.544553\pi\)
\(878\) 0 0
\(879\) 29.4300 0.992648
\(880\) 0 0
\(881\) 25.1372 0.846893 0.423446 0.905921i \(-0.360820\pi\)
0.423446 + 0.905921i \(0.360820\pi\)
\(882\) 0 0
\(883\) 41.3431 13.4332i 1.39131 0.452063i 0.484937 0.874549i \(-0.338843\pi\)
0.906369 + 0.422486i \(0.138843\pi\)
\(884\) 0 0
\(885\) 6.51430 + 2.60223i 0.218976 + 0.0874731i
\(886\) 0 0
\(887\) −27.2078 8.84036i −0.913549 0.296830i −0.185731 0.982601i \(-0.559465\pi\)
−0.727818 + 0.685770i \(0.759465\pi\)
\(888\) 0 0
\(889\) −58.6701 + 42.6263i −1.96773 + 1.42964i
\(890\) 0 0
\(891\) 20.9430 + 14.6619i 0.701617 + 0.491191i
\(892\) 0 0
\(893\) 10.7547 + 14.8026i 0.359892 + 0.495349i
\(894\) 0 0
\(895\) 32.2174 + 2.12573i 1.07691 + 0.0710553i
\(896\) 0 0
\(897\) −8.69471 + 11.9672i −0.290308 + 0.399575i
\(898\) 0 0
\(899\) 11.3488 + 34.9281i 0.378504 + 1.16492i
\(900\) 0 0
\(901\) 0.135868 0.00452643
\(902\) 0 0
\(903\) 29.3536i 0.976827i
\(904\) 0 0
\(905\) 22.5219 14.1965i 0.748652 0.471908i
\(906\) 0 0
\(907\) −28.0438 + 38.5990i −0.931179 + 1.28166i 0.0282187 + 0.999602i \(0.491017\pi\)
−0.959398 + 0.282056i \(0.908983\pi\)
\(908\) 0 0
\(909\) −0.0261885 + 0.0805998i −0.000868617 + 0.00267333i
\(910\) 0 0
\(911\) 40.3003 29.2799i 1.33521 0.970085i 0.335602 0.942004i \(-0.391060\pi\)
0.999606 0.0280809i \(-0.00893959\pi\)
\(912\) 0 0
\(913\) 22.0621 + 29.2724i 0.730150 + 0.968775i
\(914\) 0 0
\(915\) −22.4375 + 26.9543i −0.741761 + 0.891081i
\(916\) 0 0
\(917\) 73.0845 + 23.7466i 2.41346 + 0.784182i
\(918\) 0 0
\(919\) 34.7058 + 25.2153i 1.14484 + 0.831775i 0.987786 0.155815i \(-0.0498005\pi\)
0.157053 + 0.987590i \(0.449801\pi\)
\(920\) 0 0
\(921\) −6.19098 19.0539i −0.204000 0.627847i
\(922\) 0 0
\(923\) 20.5862i 0.677602i
\(924\) 0 0
\(925\) 10.8543 + 20.0328i 0.356889 + 0.658674i
\(926\) 0 0
\(927\) 0.205628 0.0668126i 0.00675371 0.00219441i
\(928\) 0 0
\(929\) −3.20719 2.33016i −0.105224 0.0764500i 0.533929 0.845529i \(-0.320715\pi\)
−0.639153 + 0.769079i \(0.720715\pi\)
\(930\) 0 0
\(931\) 11.5553 35.5635i 0.378709 1.16555i
\(932\) 0 0
\(933\) −8.94941 12.3178i −0.292991 0.403267i
\(934\) 0 0
\(935\) −0.437576 + 0.119131i −0.0143103 + 0.00389601i
\(936\) 0 0
\(937\) 1.24563 + 1.71446i 0.0406929 + 0.0560090i 0.828879 0.559429i \(-0.188979\pi\)
−0.788186 + 0.615437i \(0.788979\pi\)
\(938\) 0 0
\(939\) −7.61585 + 23.4392i −0.248534 + 0.764909i
\(940\) 0 0
\(941\) −4.08118 2.96515i −0.133043 0.0966612i 0.519274 0.854608i \(-0.326203\pi\)
−0.652316 + 0.757947i \(0.726203\pi\)
\(942\) 0 0
\(943\) −17.0537 + 5.54107i −0.555344 + 0.180442i
\(944\) 0 0
\(945\) 15.0766 + 59.4728i 0.490442 + 1.93465i
\(946\) 0 0
\(947\) 0.986192i 0.0320470i 0.999872 + 0.0160235i \(0.00510065\pi\)
−0.999872 + 0.0160235i \(0.994899\pi\)
\(948\) 0 0
\(949\) −3.89364 11.9834i −0.126393 0.388998i
\(950\) 0 0
\(951\) 17.6150 + 12.7981i 0.571206 + 0.415006i
\(952\) 0 0
\(953\) −21.8386 7.09580i −0.707422 0.229855i −0.0668608 0.997762i \(-0.521298\pi\)
−0.640562 + 0.767907i \(0.721298\pi\)
\(954\) 0 0
\(955\) −18.0759 15.0469i −0.584924 0.486907i
\(956\) 0 0
\(957\) −21.2320 6.48934i −0.686331 0.209770i
\(958\) 0 0
\(959\) −4.47994 + 3.25486i −0.144665 + 0.105105i
\(960\) 0 0
\(961\) 14.7718 45.4628i 0.476508 1.46654i
\(962\) 0 0
\(963\) −0.500670 + 0.689113i −0.0161339 + 0.0222064i
\(964\) 0 0
\(965\) 5.80530 + 9.20972i 0.186879 + 0.296472i
\(966\) 0 0
\(967\) 20.1267i 0.647231i −0.946189 0.323616i \(-0.895102\pi\)
0.946189 0.323616i \(-0.104898\pi\)
\(968\) 0 0
\(969\) 0.203937 0.00655141
\(970\) 0 0
\(971\) 6.77852 + 20.8621i 0.217533 + 0.669498i 0.998964 + 0.0455060i \(0.0144900\pi\)
−0.781431 + 0.623991i \(0.785510\pi\)
\(972\) 0 0
\(973\) 29.1959 40.1847i 0.935978 1.28826i
\(974\) 0 0
\(975\) 3.42637 + 18.5773i 0.109732 + 0.594950i
\(976\) 0 0
\(977\) −34.7133 47.7788i −1.11058 1.52858i −0.820562 0.571557i \(-0.806340\pi\)
−0.290015 0.957022i \(-0.593660\pi\)
\(978\) 0 0
\(979\) −5.90396 + 19.3167i −0.188691 + 0.617365i
\(980\) 0 0
\(981\) 2.42976 1.76533i 0.0775763 0.0563625i
\(982\) 0 0
\(983\) 45.9751 + 14.9382i 1.46638 + 0.476455i 0.930012 0.367530i \(-0.119796\pi\)
0.536367 + 0.843985i \(0.319796\pi\)
\(984\) 0 0
\(985\) −33.1745 13.2520i −1.05703 0.422245i
\(986\) 0 0
\(987\) 68.4960 22.2557i 2.18025 0.708406i
\(988\) 0 0
\(989\) −14.1655 −0.450437
\(990\) 0 0
\(991\) 55.0154 1.74762 0.873811 0.486266i \(-0.161641\pi\)
0.873811 + 0.486266i \(0.161641\pi\)
\(992\) 0 0
\(993\) 5.88201 1.91118i 0.186660 0.0606495i
\(994\) 0 0
\(995\) −13.8589 + 34.6936i −0.439356 + 1.09986i
\(996\) 0 0
\(997\) −21.8457 7.09810i −0.691861 0.224799i −0.0580799 0.998312i \(-0.518498\pi\)
−0.633781 + 0.773513i \(0.718498\pi\)
\(998\) 0 0
\(999\) 20.1736 14.6569i 0.638263 0.463725i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.cd.b.289.4 16
4.3 odd 2 110.2.j.b.69.2 yes 16
5.4 even 2 inner 880.2.cd.b.289.2 16
11.4 even 5 inner 880.2.cd.b.609.2 16
12.11 even 2 990.2.ba.h.289.3 16
20.3 even 4 550.2.h.j.201.2 8
20.7 even 4 550.2.h.n.201.1 8
20.19 odd 2 110.2.j.b.69.4 yes 16
44.15 odd 10 110.2.j.b.59.4 yes 16
44.31 odd 10 1210.2.b.k.969.7 8
44.35 even 10 1210.2.b.l.969.3 8
55.4 even 10 inner 880.2.cd.b.609.4 16
60.59 even 2 990.2.ba.h.289.1 16
132.59 even 10 990.2.ba.h.829.1 16
220.59 odd 10 110.2.j.b.59.2 16
220.79 even 10 1210.2.b.l.969.5 8
220.103 even 20 550.2.h.j.301.2 8
220.119 odd 10 1210.2.b.k.969.1 8
220.123 odd 20 6050.2.a.da.1.1 4
220.147 even 20 550.2.h.n.301.1 8
220.163 even 20 6050.2.a.di.1.2 4
220.167 odd 20 6050.2.a.dl.1.4 4
220.207 even 20 6050.2.a.dd.1.3 4
660.59 even 10 990.2.ba.h.829.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.j.b.59.2 16 220.59 odd 10
110.2.j.b.59.4 yes 16 44.15 odd 10
110.2.j.b.69.2 yes 16 4.3 odd 2
110.2.j.b.69.4 yes 16 20.19 odd 2
550.2.h.j.201.2 8 20.3 even 4
550.2.h.j.301.2 8 220.103 even 20
550.2.h.n.201.1 8 20.7 even 4
550.2.h.n.301.1 8 220.147 even 20
880.2.cd.b.289.2 16 5.4 even 2 inner
880.2.cd.b.289.4 16 1.1 even 1 trivial
880.2.cd.b.609.2 16 11.4 even 5 inner
880.2.cd.b.609.4 16 55.4 even 10 inner
990.2.ba.h.289.1 16 60.59 even 2
990.2.ba.h.289.3 16 12.11 even 2
990.2.ba.h.829.1 16 132.59 even 10
990.2.ba.h.829.3 16 660.59 even 10
1210.2.b.k.969.1 8 220.119 odd 10
1210.2.b.k.969.7 8 44.31 odd 10
1210.2.b.l.969.3 8 44.35 even 10
1210.2.b.l.969.5 8 220.79 even 10
6050.2.a.da.1.1 4 220.123 odd 20
6050.2.a.dd.1.3 4 220.207 even 20
6050.2.a.di.1.2 4 220.163 even 20
6050.2.a.dl.1.4 4 220.167 odd 20