Defining parameters
Level: | \( N \) | \(=\) | \( 880 = 2^{4} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 880.cd (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 55 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(288\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(880, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 624 | 152 | 472 |
Cusp forms | 528 | 136 | 392 |
Eisenstein series | 96 | 16 | 80 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(880, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
880.2.cd.a | $8$ | $7.027$ | \(\Q(\zeta_{20})\) | None | \(0\) | \(0\) | \(4\) | \(0\) | \(q+(2\zeta_{20}+2\zeta_{20}^{5})q^{3}+(-\zeta_{20}+\zeta_{20}^{3}+\cdots)q^{5}+\cdots\) |
880.2.cd.b | $16$ | $7.027$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(-6\) | \(0\) | \(q+(\beta _{6}+\beta _{10}+\beta _{12})q^{3}-\beta _{8}q^{5}+(1+\cdots)q^{7}+\cdots\) |
880.2.cd.c | $16$ | $7.027$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q+(-\beta _{5}-\beta _{13}+\beta _{15})q^{3}+(-\beta _{3}+\beta _{6}+\cdots)q^{5}+\cdots\) |
880.2.cd.d | $24$ | $7.027$ | None | \(0\) | \(0\) | \(1\) | \(0\) | ||
880.2.cd.e | $72$ | $7.027$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(880, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(880, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(110, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(220, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(440, [\chi])\)\(^{\oplus 2}\)