Properties

Label 880.2.cd
Level $880$
Weight $2$
Character orbit 880.cd
Rep. character $\chi_{880}(49,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $136$
Newform subspaces $5$
Sturm bound $288$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.cd (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 55 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 5 \)
Sturm bound: \(288\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(880, [\chi])\).

Total New Old
Modular forms 624 152 472
Cusp forms 528 136 392
Eisenstein series 96 16 80

Trace form

\( 136 q - 3 q^{5} + 24 q^{9} + 8 q^{11} + 15 q^{15} + 18 q^{19} - 28 q^{21} + 5 q^{25} - 6 q^{29} + 6 q^{31} + 31 q^{35} + 38 q^{39} + 6 q^{41} - 4 q^{45} - 12 q^{49} - 42 q^{51} + 43 q^{55} + 14 q^{59} - 6 q^{61}+ \cdots - 37 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(880, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
880.2.cd.a 880.cd 55.j $8$ $7.027$ \(\Q(\zeta_{20})\) None 110.2.j.a \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+(2\zeta_{20}+2\zeta_{20}^{5})q^{3}+(-\zeta_{20}+\zeta_{20}^{3}+\cdots)q^{5}+\cdots\)
880.2.cd.b 880.cd 55.j $16$ $7.027$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 110.2.j.b \(0\) \(0\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+(\beta _{6}+\beta _{10}+\beta _{12})q^{3}-\beta _{8}q^{5}+(1+\cdots)q^{7}+\cdots\)
880.2.cd.c 880.cd 55.j $16$ $7.027$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 55.2.j.a \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+(-\beta _{5}-\beta _{13}+\beta _{15})q^{3}+(-\beta _{3}+\beta _{6}+\cdots)q^{5}+\cdots\)
880.2.cd.d 880.cd 55.j $24$ $7.027$ None 220.2.t.a \(0\) \(0\) \(1\) \(0\) $\mathrm{SU}(2)[C_{10}]$
880.2.cd.e 880.cd 55.j $72$ $7.027$ None 440.2.bn.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$

Decomposition of \(S_{2}^{\mathrm{old}}(880, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(880, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(110, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(220, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(440, [\chi])\)\(^{\oplus 2}\)