Properties

Label 990.2.ba
Level $990$
Weight $2$
Character orbit 990.ba
Rep. character $\chi_{990}(289,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $120$
Newform subspaces $9$
Sturm bound $432$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.ba (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 55 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 9 \)
Sturm bound: \(432\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\), \(13\), \(29\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(990, [\chi])\).

Total New Old
Modular forms 928 120 808
Cusp forms 800 120 680
Eisenstein series 128 0 128

Trace form

\( 120 q + 30 q^{4} - 6 q^{5} + 4 q^{10} + 6 q^{11} - 6 q^{14} - 30 q^{16} + 16 q^{19} + 6 q^{20} - 14 q^{25} - 4 q^{26} + 4 q^{29} + 32 q^{31} - 8 q^{34} + 8 q^{35} + 6 q^{40} + 14 q^{41} + 14 q^{44} - 24 q^{46}+ \cdots + 110 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(990, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
990.2.ba.a 990.ba 55.j $8$ $7.905$ \(\Q(\zeta_{20})\) None 330.2.s.b \(0\) \(0\) \(-10\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q-\zeta_{20}^{3}q^{2}+\zeta_{20}^{6}q^{4}+(-2+\zeta_{20}^{2}+\cdots)q^{5}+\cdots\)
990.2.ba.b 990.ba 55.j $8$ $7.905$ \(\Q(\zeta_{20})\) None 110.2.j.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+(-\zeta_{20}+\zeta_{20}^{3}-\zeta_{20}^{5}+\zeta_{20}^{7})q^{2}+\cdots\)
990.2.ba.c 990.ba 55.j $8$ $7.905$ \(\Q(\zeta_{20})\) None 990.2.ba.c \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+(-\zeta_{20}+\zeta_{20}^{3}-\zeta_{20}^{5}+\zeta_{20}^{7})q^{2}+\cdots\)
990.2.ba.d 990.ba 55.j $8$ $7.905$ \(\Q(\zeta_{20})\) None 330.2.s.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+(-\zeta_{20}+\zeta_{20}^{3}-\zeta_{20}^{5}+\zeta_{20}^{7})q^{2}+\cdots\)
990.2.ba.e 990.ba 55.j $8$ $7.905$ \(\Q(\zeta_{20})\) None 990.2.ba.c \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+(\zeta_{20}-\zeta_{20}^{3}+\zeta_{20}^{5}-\zeta_{20}^{7})q^{2}+\cdots\)
990.2.ba.f 990.ba 55.j $16$ $7.905$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 990.2.ba.f \(0\) \(0\) \(0\) \(-10\) $\mathrm{SU}(2)[C_{10}]$ \(q-\beta _{12}q^{2}-\beta _{4}q^{4}+(\beta _{8}+2\beta _{9}+2\beta _{11}+\cdots)q^{5}+\cdots\)
990.2.ba.g 990.ba 55.j $16$ $7.905$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 990.2.ba.f \(0\) \(0\) \(0\) \(10\) $\mathrm{SU}(2)[C_{10}]$ \(q+\beta _{12}q^{2}-\beta _{4}q^{4}+(-2\beta _{8}-\beta _{9}-2\beta _{12}+\cdots)q^{5}+\cdots\)
990.2.ba.h 990.ba 55.j $16$ $7.905$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 110.2.j.b \(0\) \(0\) \(6\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q-\beta _{5}q^{2}-\beta _{11}q^{4}+(\beta _{5}+\beta _{6}-\beta _{7}+\cdots)q^{5}+\cdots\)
990.2.ba.i 990.ba 55.j $32$ $7.905$ None 330.2.s.c \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{10}]$

Decomposition of \(S_{2}^{\mathrm{old}}(990, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(990, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(110, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(330, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(495, [\chi])\)\(^{\oplus 2}\)