Properties

Label 990.2.ba.b.829.1
Level $990$
Weight $2$
Character 990.829
Analytic conductor $7.905$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [990,2,Mod(289,990)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(990, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("990.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 990 = 2 \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 990.ba (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,2,-4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.90518980011\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 829.1
Root \(0.587785 + 0.809017i\) of defining polynomial
Character \(\chi\) \(=\) 990.829
Dual form 990.2.ba.b.289.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.587785 + 0.809017i) q^{2} +(-0.309017 - 0.951057i) q^{4} +(-1.03025 + 1.98459i) q^{5} +(0.587785 - 0.190983i) q^{7} +(0.951057 + 0.309017i) q^{8} +(-1.00000 - 2.00000i) q^{10} +(-1.69098 - 2.85317i) q^{11} +(1.40008 - 1.92705i) q^{13} +(-0.190983 + 0.587785i) q^{14} +(-0.809017 + 0.587785i) q^{16} +(-3.80423 - 5.23607i) q^{17} +(-1.11803 + 3.44095i) q^{19} +(2.20582 + 0.366554i) q^{20} +(3.30220 + 0.309017i) q^{22} -4.61803i q^{23} +(-2.87718 - 4.08924i) q^{25} +(0.736068 + 2.26538i) q^{26} +(-0.363271 - 0.500000i) q^{28} +(1.38197 + 4.25325i) q^{29} +(-1.61803 - 1.17557i) q^{31} -1.00000i q^{32} +6.47214 q^{34} +(-0.226543 + 1.36327i) q^{35} +(5.34307 - 1.73607i) q^{37} +(-2.12663 - 2.92705i) q^{38} +(-1.59310 + 1.56909i) q^{40} +(-0.190983 + 0.587785i) q^{41} -8.47214i q^{43} +(-2.19098 + 2.48990i) q^{44} +(3.73607 + 2.71441i) q^{46} +(9.59632 + 3.11803i) q^{47} +(-5.35410 + 3.88998i) q^{49} +(4.99942 + 0.0759100i) q^{50} +(-2.26538 - 0.736068i) q^{52} +(4.16750 - 5.73607i) q^{53} +(7.40450 - 0.416429i) q^{55} +0.618034 q^{56} +(-4.25325 - 1.38197i) q^{58} +(-3.35410 - 10.3229i) q^{59} +(5.61803 - 4.08174i) q^{61} +(1.90211 - 0.618034i) q^{62} +(0.809017 + 0.587785i) q^{64} +(2.38197 + 4.76393i) q^{65} -9.23607i q^{67} +(-3.80423 + 5.23607i) q^{68} +(-0.969751 - 0.984587i) q^{70} +(1.61803 - 1.17557i) q^{71} +(-1.45309 + 0.472136i) q^{73} +(-1.73607 + 5.34307i) q^{74} +3.61803 q^{76} +(-1.53884 - 1.35410i) q^{77} +(-5.00000 - 3.63271i) q^{79} +(-0.333023 - 2.21113i) q^{80} +(-0.363271 - 0.500000i) q^{82} +(-5.98385 - 8.23607i) q^{83} +(14.3107 - 2.15537i) q^{85} +(6.85410 + 4.97980i) q^{86} +(-0.726543 - 3.23607i) q^{88} +11.3820 q^{89} +(0.454915 - 1.40008i) q^{91} +(-4.39201 + 1.42705i) q^{92} +(-8.16312 + 5.93085i) q^{94} +(-5.67702 - 5.76388i) q^{95} +(-5.42882 + 7.47214i) q^{97} -6.61803i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{4} - 4 q^{5} - 8 q^{10} - 18 q^{11} - 6 q^{14} - 2 q^{16} + 4 q^{20} - 6 q^{25} - 12 q^{26} + 20 q^{29} - 4 q^{31} + 16 q^{34} + 4 q^{35} - 2 q^{40} - 6 q^{41} - 22 q^{44} + 12 q^{46} - 16 q^{49}+ \cdots - 34 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/990\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(551\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.587785 + 0.809017i −0.415627 + 0.572061i
\(3\) 0 0
\(4\) −0.309017 0.951057i −0.154508 0.475528i
\(5\) −1.03025 + 1.98459i −0.460741 + 0.887535i
\(6\) 0 0
\(7\) 0.587785 0.190983i 0.222162 0.0721848i −0.195821 0.980640i \(-0.562737\pi\)
0.417983 + 0.908455i \(0.362737\pi\)
\(8\) 0.951057 + 0.309017i 0.336249 + 0.109254i
\(9\) 0 0
\(10\) −1.00000 2.00000i −0.316228 0.632456i
\(11\) −1.69098 2.85317i −0.509851 0.860263i
\(12\) 0 0
\(13\) 1.40008 1.92705i 0.388314 0.534468i −0.569449 0.822026i \(-0.692844\pi\)
0.957763 + 0.287559i \(0.0928436\pi\)
\(14\) −0.190983 + 0.587785i −0.0510424 + 0.157092i
\(15\) 0 0
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) −3.80423 5.23607i −0.922660 1.26993i −0.962654 0.270733i \(-0.912734\pi\)
0.0399941 0.999200i \(-0.487266\pi\)
\(18\) 0 0
\(19\) −1.11803 + 3.44095i −0.256495 + 0.789409i 0.737037 + 0.675852i \(0.236224\pi\)
−0.993532 + 0.113557i \(0.963776\pi\)
\(20\) 2.20582 + 0.366554i 0.493236 + 0.0819639i
\(21\) 0 0
\(22\) 3.30220 + 0.309017i 0.704031 + 0.0658826i
\(23\) 4.61803i 0.962927i −0.876466 0.481463i \(-0.840105\pi\)
0.876466 0.481463i \(-0.159895\pi\)
\(24\) 0 0
\(25\) −2.87718 4.08924i −0.575435 0.817848i
\(26\) 0.736068 + 2.26538i 0.144355 + 0.444278i
\(27\) 0 0
\(28\) −0.363271 0.500000i −0.0686518 0.0944911i
\(29\) 1.38197 + 4.25325i 0.256625 + 0.789809i 0.993505 + 0.113787i \(0.0362980\pi\)
−0.736881 + 0.676023i \(0.763702\pi\)
\(30\) 0 0
\(31\) −1.61803 1.17557i −0.290607 0.211139i 0.432923 0.901431i \(-0.357482\pi\)
−0.723531 + 0.690292i \(0.757482\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 6.47214 1.10996
\(35\) −0.226543 + 1.36327i −0.0382927 + 0.230435i
\(36\) 0 0
\(37\) 5.34307 1.73607i 0.878395 0.285408i 0.165104 0.986276i \(-0.447204\pi\)
0.713291 + 0.700868i \(0.247204\pi\)
\(38\) −2.12663 2.92705i −0.344984 0.474830i
\(39\) 0 0
\(40\) −1.59310 + 1.56909i −0.251891 + 0.248095i
\(41\) −0.190983 + 0.587785i −0.0298265 + 0.0917966i −0.964862 0.262759i \(-0.915368\pi\)
0.935035 + 0.354555i \(0.115368\pi\)
\(42\) 0 0
\(43\) 8.47214i 1.29199i −0.763342 0.645994i \(-0.776443\pi\)
0.763342 0.645994i \(-0.223557\pi\)
\(44\) −2.19098 + 2.48990i −0.330303 + 0.375366i
\(45\) 0 0
\(46\) 3.73607 + 2.71441i 0.550853 + 0.400218i
\(47\) 9.59632 + 3.11803i 1.39977 + 0.454812i 0.909116 0.416544i \(-0.136759\pi\)
0.490652 + 0.871356i \(0.336759\pi\)
\(48\) 0 0
\(49\) −5.35410 + 3.88998i −0.764872 + 0.555712i
\(50\) 4.99942 + 0.0759100i 0.707025 + 0.0107353i
\(51\) 0 0
\(52\) −2.26538 0.736068i −0.314152 0.102074i
\(53\) 4.16750 5.73607i 0.572450 0.787910i −0.420393 0.907342i \(-0.638108\pi\)
0.992842 + 0.119433i \(0.0381076\pi\)
\(54\) 0 0
\(55\) 7.40450 0.416429i 0.998422 0.0561513i
\(56\) 0.618034 0.0825883
\(57\) 0 0
\(58\) −4.25325 1.38197i −0.558480 0.181461i
\(59\) −3.35410 10.3229i −0.436667 1.34392i −0.891369 0.453279i \(-0.850254\pi\)
0.454702 0.890644i \(-0.349746\pi\)
\(60\) 0 0
\(61\) 5.61803 4.08174i 0.719316 0.522613i −0.166850 0.985982i \(-0.553360\pi\)
0.886165 + 0.463369i \(0.153360\pi\)
\(62\) 1.90211 0.618034i 0.241569 0.0784904i
\(63\) 0 0
\(64\) 0.809017 + 0.587785i 0.101127 + 0.0734732i
\(65\) 2.38197 + 4.76393i 0.295447 + 0.590893i
\(66\) 0 0
\(67\) 9.23607i 1.12837i −0.825650 0.564183i \(-0.809191\pi\)
0.825650 0.564183i \(-0.190809\pi\)
\(68\) −3.80423 + 5.23607i −0.461330 + 0.634967i
\(69\) 0 0
\(70\) −0.969751 0.984587i −0.115907 0.117681i
\(71\) 1.61803 1.17557i 0.192025 0.139515i −0.487619 0.873057i \(-0.662134\pi\)
0.679644 + 0.733542i \(0.262134\pi\)
\(72\) 0 0
\(73\) −1.45309 + 0.472136i −0.170071 + 0.0552593i −0.392815 0.919618i \(-0.628499\pi\)
0.222744 + 0.974877i \(0.428499\pi\)
\(74\) −1.73607 + 5.34307i −0.201814 + 0.621119i
\(75\) 0 0
\(76\) 3.61803 0.415017
\(77\) −1.53884 1.35410i −0.175367 0.154314i
\(78\) 0 0
\(79\) −5.00000 3.63271i −0.562544 0.408712i 0.269845 0.962904i \(-0.413027\pi\)
−0.832389 + 0.554192i \(0.813027\pi\)
\(80\) −0.333023 2.21113i −0.0372331 0.247212i
\(81\) 0 0
\(82\) −0.363271 0.500000i −0.0401166 0.0552158i
\(83\) −5.98385 8.23607i −0.656813 0.904026i 0.342557 0.939497i \(-0.388707\pi\)
−0.999371 + 0.0354710i \(0.988707\pi\)
\(84\) 0 0
\(85\) 14.3107 2.15537i 1.55222 0.233782i
\(86\) 6.85410 + 4.97980i 0.739097 + 0.536985i
\(87\) 0 0
\(88\) −0.726543 3.23607i −0.0774497 0.344966i
\(89\) 11.3820 1.20649 0.603243 0.797557i \(-0.293875\pi\)
0.603243 + 0.797557i \(0.293875\pi\)
\(90\) 0 0
\(91\) 0.454915 1.40008i 0.0476881 0.146769i
\(92\) −4.39201 + 1.42705i −0.457899 + 0.148780i
\(93\) 0 0
\(94\) −8.16312 + 5.93085i −0.841961 + 0.611721i
\(95\) −5.67702 5.76388i −0.582450 0.591361i
\(96\) 0 0
\(97\) −5.42882 + 7.47214i −0.551214 + 0.758680i −0.990176 0.139825i \(-0.955346\pi\)
0.438963 + 0.898505i \(0.355346\pi\)
\(98\) 6.61803i 0.668522i
\(99\) 0 0
\(100\) −3.00000 + 4.00000i −0.300000 + 0.400000i
\(101\) −15.9443 11.5842i −1.58651 1.15267i −0.908710 0.417428i \(-0.862932\pi\)
−0.677804 0.735242i \(-0.737068\pi\)
\(102\) 0 0
\(103\) −6.51864 + 2.11803i −0.642301 + 0.208696i −0.612016 0.790845i \(-0.709641\pi\)
−0.0302843 + 0.999541i \(0.509641\pi\)
\(104\) 1.92705 1.40008i 0.188963 0.137290i
\(105\) 0 0
\(106\) 2.19098 + 6.74315i 0.212807 + 0.654953i
\(107\) 14.6619 + 4.76393i 1.41742 + 0.460547i 0.914781 0.403951i \(-0.132363\pi\)
0.502636 + 0.864498i \(0.332363\pi\)
\(108\) 0 0
\(109\) 5.52786 0.529473 0.264737 0.964321i \(-0.414715\pi\)
0.264737 + 0.964321i \(0.414715\pi\)
\(110\) −4.01536 + 6.23514i −0.382849 + 0.594497i
\(111\) 0 0
\(112\) −0.363271 + 0.500000i −0.0343259 + 0.0472456i
\(113\) −8.95554 2.90983i −0.842466 0.273734i −0.144179 0.989552i \(-0.546054\pi\)
−0.698287 + 0.715818i \(0.746054\pi\)
\(114\) 0 0
\(115\) 9.16489 + 4.75772i 0.854631 + 0.443660i
\(116\) 3.61803 2.62866i 0.335926 0.244065i
\(117\) 0 0
\(118\) 10.3229 + 3.35410i 0.950297 + 0.308770i
\(119\) −3.23607 2.35114i −0.296650 0.215529i
\(120\) 0 0
\(121\) −5.28115 + 9.64932i −0.480105 + 0.877211i
\(122\) 6.94427i 0.628705i
\(123\) 0 0
\(124\) −0.618034 + 1.90211i −0.0555011 + 0.170815i
\(125\) 11.0797 1.49707i 0.990995 0.133902i
\(126\) 0 0
\(127\) 1.67760 + 2.30902i 0.148863 + 0.204892i 0.876936 0.480608i \(-0.159584\pi\)
−0.728073 + 0.685500i \(0.759584\pi\)
\(128\) −0.951057 + 0.309017i −0.0840623 + 0.0273135i
\(129\) 0 0
\(130\) −5.25419 0.873118i −0.460823 0.0765775i
\(131\) 8.00000 0.698963 0.349482 0.936943i \(-0.386358\pi\)
0.349482 + 0.936943i \(0.386358\pi\)
\(132\) 0 0
\(133\) 2.23607i 0.193892i
\(134\) 7.47214 + 5.42882i 0.645494 + 0.468979i
\(135\) 0 0
\(136\) −2.00000 6.15537i −0.171499 0.527818i
\(137\) 12.5882 + 17.3262i 1.07549 + 1.48028i 0.864394 + 0.502814i \(0.167702\pi\)
0.211092 + 0.977466i \(0.432298\pi\)
\(138\) 0 0
\(139\) −0.100813 0.310271i −0.00855085 0.0263168i 0.946690 0.322146i \(-0.104404\pi\)
−0.955241 + 0.295829i \(0.904404\pi\)
\(140\) 1.36655 0.205819i 0.115495 0.0173949i
\(141\) 0 0
\(142\) 2.00000i 0.167836i
\(143\) −7.86572 0.736068i −0.657765 0.0615531i
\(144\) 0 0
\(145\) −9.86472 1.63928i −0.819221 0.136135i
\(146\) 0.472136 1.45309i 0.0390742 0.120258i
\(147\) 0 0
\(148\) −3.30220 4.54508i −0.271439 0.373604i
\(149\) −17.5623 + 12.7598i −1.43876 + 1.04532i −0.450460 + 0.892796i \(0.648740\pi\)
−0.988300 + 0.152524i \(0.951260\pi\)
\(150\) 0 0
\(151\) 4.23607 13.0373i 0.344726 1.06096i −0.617004 0.786960i \(-0.711654\pi\)
0.961730 0.273998i \(-0.0883463\pi\)
\(152\) −2.12663 + 2.92705i −0.172492 + 0.237415i
\(153\) 0 0
\(154\) 2.00000 0.449028i 0.161165 0.0361837i
\(155\) 4.00000 2.00000i 0.321288 0.160644i
\(156\) 0 0
\(157\) −5.84510 1.89919i −0.466489 0.151572i 0.0663350 0.997797i \(-0.478869\pi\)
−0.532824 + 0.846226i \(0.678869\pi\)
\(158\) 5.87785 1.90983i 0.467617 0.151938i
\(159\) 0 0
\(160\) 1.98459 + 1.03025i 0.156895 + 0.0814483i
\(161\) −0.881966 2.71441i −0.0695087 0.213926i
\(162\) 0 0
\(163\) 5.53483 7.61803i 0.433521 0.596690i −0.535236 0.844703i \(-0.679777\pi\)
0.968757 + 0.248012i \(0.0797773\pi\)
\(164\) 0.618034 0.0482603
\(165\) 0 0
\(166\) 10.1803 0.790148
\(167\) −7.83297 + 10.7812i −0.606133 + 0.834271i −0.996252 0.0864937i \(-0.972434\pi\)
0.390119 + 0.920764i \(0.372434\pi\)
\(168\) 0 0
\(169\) 2.26393 + 6.96767i 0.174149 + 0.535974i
\(170\) −6.66791 + 12.8445i −0.511405 + 0.985130i
\(171\) 0 0
\(172\) −8.05748 + 2.61803i −0.614377 + 0.199623i
\(173\) −1.76336 0.572949i −0.134065 0.0435605i 0.241216 0.970472i \(-0.422454\pi\)
−0.375281 + 0.926911i \(0.622454\pi\)
\(174\) 0 0
\(175\) −2.47214 1.85410i −0.186876 0.140157i
\(176\) 3.04508 + 1.31433i 0.229532 + 0.0990712i
\(177\) 0 0
\(178\) −6.69015 + 9.20820i −0.501448 + 0.690184i
\(179\) −2.86475 + 8.81678i −0.214121 + 0.658997i 0.785094 + 0.619377i \(0.212615\pi\)
−0.999215 + 0.0396200i \(0.987385\pi\)
\(180\) 0 0
\(181\) −16.0902 + 11.6902i −1.19597 + 0.868925i −0.993883 0.110442i \(-0.964773\pi\)
−0.202090 + 0.979367i \(0.564773\pi\)
\(182\) 0.865300 + 1.19098i 0.0641403 + 0.0882815i
\(183\) 0 0
\(184\) 1.42705 4.39201i 0.105204 0.323783i
\(185\) −2.05931 + 12.3924i −0.151403 + 0.911105i
\(186\) 0 0
\(187\) −8.50651 + 19.7082i −0.622057 + 1.44121i
\(188\) 10.0902i 0.735901i
\(189\) 0 0
\(190\) 7.99994 1.20489i 0.580377 0.0874117i
\(191\) 2.79837 + 8.61251i 0.202483 + 0.623179i 0.999807 + 0.0196279i \(0.00624817\pi\)
−0.797324 + 0.603551i \(0.793752\pi\)
\(192\) 0 0
\(193\) −7.77997 10.7082i −0.560014 0.770793i 0.431314 0.902202i \(-0.358050\pi\)
−0.991328 + 0.131408i \(0.958050\pi\)
\(194\) −2.85410 8.78402i −0.204913 0.630656i
\(195\) 0 0
\(196\) 5.35410 + 3.88998i 0.382436 + 0.277856i
\(197\) 26.2148i 1.86773i −0.357631 0.933863i \(-0.616415\pi\)
0.357631 0.933863i \(-0.383585\pi\)
\(198\) 0 0
\(199\) 5.52786 0.391860 0.195930 0.980618i \(-0.437227\pi\)
0.195930 + 0.980618i \(0.437227\pi\)
\(200\) −1.47271 4.77819i −0.104136 0.337869i
\(201\) 0 0
\(202\) 18.7436 6.09017i 1.31880 0.428503i
\(203\) 1.62460 + 2.23607i 0.114024 + 0.156941i
\(204\) 0 0
\(205\) −0.969751 0.984587i −0.0677304 0.0687666i
\(206\) 2.11803 6.51864i 0.147570 0.454175i
\(207\) 0 0
\(208\) 2.38197i 0.165160i
\(209\) 11.7082 2.62866i 0.809873 0.181828i
\(210\) 0 0
\(211\) −21.4164 15.5599i −1.47437 1.07119i −0.979319 0.202324i \(-0.935151\pi\)
−0.495048 0.868866i \(-0.664849\pi\)
\(212\) −6.74315 2.19098i −0.463122 0.150477i
\(213\) 0 0
\(214\) −12.4721 + 9.06154i −0.852578 + 0.619434i
\(215\) 16.8137 + 8.72841i 1.14668 + 0.595272i
\(216\) 0 0
\(217\) −1.17557 0.381966i −0.0798029 0.0259295i
\(218\) −3.24920 + 4.47214i −0.220063 + 0.302891i
\(219\) 0 0
\(220\) −2.68416 6.91341i −0.180966 0.466102i
\(221\) −15.4164 −1.03702
\(222\) 0 0
\(223\) 18.1558 + 5.89919i 1.21580 + 0.395039i 0.845552 0.533893i \(-0.179271\pi\)
0.370252 + 0.928931i \(0.379271\pi\)
\(224\) −0.190983 0.587785i −0.0127606 0.0392731i
\(225\) 0 0
\(226\) 7.61803 5.53483i 0.506744 0.368171i
\(227\) −11.4127 + 3.70820i −0.757486 + 0.246122i −0.662199 0.749328i \(-0.730377\pi\)
−0.0952867 + 0.995450i \(0.530377\pi\)
\(228\) 0 0
\(229\) −5.85410 4.25325i −0.386850 0.281063i 0.377314 0.926086i \(-0.376848\pi\)
−0.764163 + 0.645023i \(0.776848\pi\)
\(230\) −9.23607 + 4.61803i −0.609008 + 0.304504i
\(231\) 0 0
\(232\) 4.47214i 0.293610i
\(233\) 11.2412 15.4721i 0.736433 1.01361i −0.262383 0.964964i \(-0.584508\pi\)
0.998816 0.0486494i \(-0.0154917\pi\)
\(234\) 0 0
\(235\) −16.0746 + 15.8324i −1.04859 + 1.03279i
\(236\) −8.78115 + 6.37988i −0.571604 + 0.415295i
\(237\) 0 0
\(238\) 3.80423 1.23607i 0.246591 0.0801224i
\(239\) 2.23607 6.88191i 0.144639 0.445154i −0.852325 0.523012i \(-0.824808\pi\)
0.996964 + 0.0778584i \(0.0248082\pi\)
\(240\) 0 0
\(241\) −4.90983 −0.316270 −0.158135 0.987418i \(-0.550548\pi\)
−0.158135 + 0.987418i \(0.550548\pi\)
\(242\) −4.70228 9.94427i −0.302274 0.639242i
\(243\) 0 0
\(244\) −5.61803 4.08174i −0.359658 0.261307i
\(245\) −2.20395 14.6333i −0.140805 0.934889i
\(246\) 0 0
\(247\) 5.06555 + 6.97214i 0.322313 + 0.443626i
\(248\) −1.17557 1.61803i −0.0746488 0.102745i
\(249\) 0 0
\(250\) −5.30130 + 9.84359i −0.335284 + 0.622563i
\(251\) 5.50000 + 3.99598i 0.347157 + 0.252224i 0.747675 0.664064i \(-0.231170\pi\)
−0.400518 + 0.916289i \(0.631170\pi\)
\(252\) 0 0
\(253\) −13.1760 + 7.80902i −0.828370 + 0.490949i
\(254\) −2.85410 −0.179082
\(255\) 0 0
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) −19.9192 + 6.47214i −1.24252 + 0.403721i −0.855236 0.518238i \(-0.826588\pi\)
−0.387288 + 0.921959i \(0.626588\pi\)
\(258\) 0 0
\(259\) 2.80902 2.04087i 0.174544 0.126814i
\(260\) 3.79470 3.73752i 0.235337 0.231791i
\(261\) 0 0
\(262\) −4.70228 + 6.47214i −0.290508 + 0.399850i
\(263\) 5.14590i 0.317310i −0.987334 0.158655i \(-0.949284\pi\)
0.987334 0.158655i \(-0.0507157\pi\)
\(264\) 0 0
\(265\) 7.09017 + 14.1803i 0.435546 + 0.871091i
\(266\) −1.80902 1.31433i −0.110918 0.0805866i
\(267\) 0 0
\(268\) −8.78402 + 2.85410i −0.536570 + 0.174342i
\(269\) −18.0902 + 13.1433i −1.10298 + 0.801360i −0.981543 0.191240i \(-0.938749\pi\)
−0.121434 + 0.992600i \(0.538749\pi\)
\(270\) 0 0
\(271\) −0.437694 1.34708i −0.0265880 0.0818295i 0.936882 0.349646i \(-0.113698\pi\)
−0.963470 + 0.267816i \(0.913698\pi\)
\(272\) 6.15537 + 2.00000i 0.373224 + 0.121268i
\(273\) 0 0
\(274\) −21.4164 −1.29381
\(275\) −6.80203 + 15.1239i −0.410178 + 0.912005i
\(276\) 0 0
\(277\) 0.0202444 0.0278640i 0.00121637 0.00167419i −0.808408 0.588622i \(-0.799671\pi\)
0.809625 + 0.586948i \(0.199671\pi\)
\(278\) 0.310271 + 0.100813i 0.0186088 + 0.00604637i
\(279\) 0 0
\(280\) −0.636729 + 1.22654i −0.0380518 + 0.0732999i
\(281\) −7.32624 + 5.32282i −0.437047 + 0.317533i −0.784460 0.620179i \(-0.787060\pi\)
0.347414 + 0.937712i \(0.387060\pi\)
\(282\) 0 0
\(283\) −0.171513 0.0557281i −0.0101954 0.00331269i 0.303915 0.952699i \(-0.401706\pi\)
−0.314110 + 0.949387i \(0.601706\pi\)
\(284\) −1.61803 1.17557i −0.0960127 0.0697573i
\(285\) 0 0
\(286\) 5.21885 5.93085i 0.308597 0.350699i
\(287\) 0.381966i 0.0225467i
\(288\) 0 0
\(289\) −7.69098 + 23.6704i −0.452411 + 1.39238i
\(290\) 7.12454 7.01719i 0.418368 0.412063i
\(291\) 0 0
\(292\) 0.898056 + 1.23607i 0.0525547 + 0.0723354i
\(293\) −28.3929 + 9.22542i −1.65873 + 0.538955i −0.980606 0.195990i \(-0.937208\pi\)
−0.678127 + 0.734945i \(0.737208\pi\)
\(294\) 0 0
\(295\) 23.9422 + 3.97861i 1.39397 + 0.231644i
\(296\) 5.61803 0.326542
\(297\) 0 0
\(298\) 21.7082i 1.25752i
\(299\) −8.89919 6.46564i −0.514653 0.373917i
\(300\) 0 0
\(301\) −1.61803 4.97980i −0.0932619 0.287031i
\(302\) 8.05748 + 11.0902i 0.463656 + 0.638168i
\(303\) 0 0
\(304\) −1.11803 3.44095i −0.0641236 0.197352i
\(305\) 2.31260 + 15.3547i 0.132419 + 0.879207i
\(306\) 0 0
\(307\) 15.2361i 0.869568i 0.900535 + 0.434784i \(0.143175\pi\)
−0.900535 + 0.434784i \(0.856825\pi\)
\(308\) −0.812299 + 1.88197i −0.0462850 + 0.107235i
\(309\) 0 0
\(310\) −0.733107 + 4.41164i −0.0416377 + 0.250564i
\(311\) 1.29180 3.97574i 0.0732510 0.225444i −0.907727 0.419561i \(-0.862184\pi\)
0.980978 + 0.194117i \(0.0621842\pi\)
\(312\) 0 0
\(313\) −6.77591 9.32624i −0.382997 0.527150i 0.573378 0.819291i \(-0.305632\pi\)
−0.956375 + 0.292141i \(0.905632\pi\)
\(314\) 4.97214 3.61247i 0.280594 0.203863i
\(315\) 0 0
\(316\) −1.90983 + 5.87785i −0.107436 + 0.330655i
\(317\) −8.45351 + 11.6353i −0.474796 + 0.653501i −0.977494 0.210961i \(-0.932341\pi\)
0.502698 + 0.864462i \(0.332341\pi\)
\(318\) 0 0
\(319\) 9.79837 11.1352i 0.548604 0.623449i
\(320\) −2.00000 + 1.00000i −0.111803 + 0.0559017i
\(321\) 0 0
\(322\) 2.71441 + 0.881966i 0.151268 + 0.0491500i
\(323\) 22.2703 7.23607i 1.23915 0.402626i
\(324\) 0 0
\(325\) −11.9085 0.180815i −0.660562 0.0100298i
\(326\) 2.90983 + 8.95554i 0.161161 + 0.496001i
\(327\) 0 0
\(328\) −0.363271 + 0.500000i −0.0200583 + 0.0276079i
\(329\) 6.23607 0.343806
\(330\) 0 0
\(331\) −6.09017 −0.334746 −0.167373 0.985894i \(-0.553528\pi\)
−0.167373 + 0.985894i \(0.553528\pi\)
\(332\) −5.98385 + 8.23607i −0.328407 + 0.452013i
\(333\) 0 0
\(334\) −4.11803 12.6740i −0.225329 0.693491i
\(335\) 18.3298 + 9.51545i 1.00146 + 0.519884i
\(336\) 0 0
\(337\) −1.73060 + 0.562306i −0.0942718 + 0.0306308i −0.355773 0.934572i \(-0.615782\pi\)
0.261501 + 0.965203i \(0.415782\pi\)
\(338\) −6.96767 2.26393i −0.378991 0.123142i
\(339\) 0 0
\(340\) −6.47214 12.9443i −0.351001 0.702002i
\(341\) −0.618034 + 6.60440i −0.0334684 + 0.357648i
\(342\) 0 0
\(343\) −4.94704 + 6.80902i −0.267115 + 0.367652i
\(344\) 2.61803 8.05748i 0.141155 0.434430i
\(345\) 0 0
\(346\) 1.50000 1.08981i 0.0806405 0.0585888i
\(347\) −1.55909 2.14590i −0.0836961 0.115198i 0.765116 0.643893i \(-0.222682\pi\)
−0.848812 + 0.528695i \(0.822682\pi\)
\(348\) 0 0
\(349\) 2.23607 6.88191i 0.119694 0.368380i −0.873203 0.487356i \(-0.837961\pi\)
0.992897 + 0.118976i \(0.0379612\pi\)
\(350\) 2.95309 0.910186i 0.157849 0.0486515i
\(351\) 0 0
\(352\) −2.85317 + 1.69098i −0.152074 + 0.0901297i
\(353\) 16.0000i 0.851594i −0.904819 0.425797i \(-0.859994\pi\)
0.904819 0.425797i \(-0.140006\pi\)
\(354\) 0 0
\(355\) 0.666045 + 4.42226i 0.0353500 + 0.234709i
\(356\) −3.51722 10.8249i −0.186412 0.573718i
\(357\) 0 0
\(358\) −5.44907 7.50000i −0.287992 0.396387i
\(359\) −10.0000 30.7768i −0.527780 1.62434i −0.758753 0.651379i \(-0.774191\pi\)
0.230973 0.972960i \(-0.425809\pi\)
\(360\) 0 0
\(361\) 4.78115 + 3.47371i 0.251640 + 0.182827i
\(362\) 19.8885i 1.04532i
\(363\) 0 0
\(364\) −1.47214 −0.0771609
\(365\) 0.560044 3.37019i 0.0293140 0.176404i
\(366\) 0 0
\(367\) 28.4257 9.23607i 1.48381 0.482119i 0.548561 0.836111i \(-0.315176\pi\)
0.935248 + 0.353992i \(0.115176\pi\)
\(368\) 2.71441 + 3.73607i 0.141499 + 0.194756i
\(369\) 0 0
\(370\) −8.81520 8.95007i −0.458281 0.465292i
\(371\) 1.35410 4.16750i 0.0703015 0.216366i
\(372\) 0 0
\(373\) 6.56231i 0.339783i −0.985463 0.169892i \(-0.945658\pi\)
0.985463 0.169892i \(-0.0543418\pi\)
\(374\) −10.9443 18.4661i −0.565915 0.954859i
\(375\) 0 0
\(376\) 8.16312 + 5.93085i 0.420981 + 0.305860i
\(377\) 10.1311 + 3.29180i 0.521779 + 0.169536i
\(378\) 0 0
\(379\) 25.9164 18.8294i 1.33124 0.967200i 0.331519 0.943449i \(-0.392439\pi\)
0.999718 0.0237512i \(-0.00756095\pi\)
\(380\) −3.72747 + 7.18031i −0.191215 + 0.368342i
\(381\) 0 0
\(382\) −8.61251 2.79837i −0.440654 0.143177i
\(383\) 13.0575 17.9721i 0.667208 0.918333i −0.332485 0.943109i \(-0.607887\pi\)
0.999693 + 0.0247753i \(0.00788704\pi\)
\(384\) 0 0
\(385\) 4.27272 1.65890i 0.217758 0.0845456i
\(386\) 13.2361 0.673698
\(387\) 0 0
\(388\) 8.78402 + 2.85410i 0.445941 + 0.144895i
\(389\) 7.76393 + 23.8949i 0.393647 + 1.21152i 0.930010 + 0.367534i \(0.119798\pi\)
−0.536363 + 0.843987i \(0.680202\pi\)
\(390\) 0 0
\(391\) −24.1803 + 17.5680i −1.22285 + 0.888454i
\(392\) −6.29412 + 2.04508i −0.317901 + 0.103292i
\(393\) 0 0
\(394\) 21.2082 + 15.4087i 1.06845 + 0.776277i
\(395\) 12.3607 6.18034i 0.621933 0.310967i
\(396\) 0 0
\(397\) 12.3262i 0.618636i −0.950959 0.309318i \(-0.899899\pi\)
0.950959 0.309318i \(-0.100101\pi\)
\(398\) −3.24920 + 4.47214i −0.162868 + 0.224168i
\(399\) 0 0
\(400\) 4.73128 + 1.61710i 0.236564 + 0.0808551i
\(401\) 0.0729490 0.0530006i 0.00364290 0.00264672i −0.585962 0.810338i \(-0.699283\pi\)
0.589605 + 0.807692i \(0.299283\pi\)
\(402\) 0 0
\(403\) −4.53077 + 1.47214i −0.225694 + 0.0733323i
\(404\) −6.09017 + 18.7436i −0.302997 + 0.932530i
\(405\) 0 0
\(406\) −2.76393 −0.137172
\(407\) −13.9883 12.3090i −0.693376 0.610135i
\(408\) 0 0
\(409\) 21.0172 + 15.2699i 1.03923 + 0.755048i 0.970136 0.242562i \(-0.0779877\pi\)
0.0690987 + 0.997610i \(0.477988\pi\)
\(410\) 1.36655 0.205819i 0.0674893 0.0101647i
\(411\) 0 0
\(412\) 4.02874 + 5.54508i 0.198482 + 0.273187i
\(413\) −3.94298 5.42705i −0.194022 0.267048i
\(414\) 0 0
\(415\) 22.5101 3.39028i 1.10498 0.166422i
\(416\) −1.92705 1.40008i −0.0944814 0.0686448i
\(417\) 0 0
\(418\) −4.75528 + 11.0172i −0.232588 + 0.538870i
\(419\) 35.9787 1.75768 0.878838 0.477121i \(-0.158320\pi\)
0.878838 + 0.477121i \(0.158320\pi\)
\(420\) 0 0
\(421\) 0.618034 1.90211i 0.0301211 0.0927033i −0.934866 0.355001i \(-0.884480\pi\)
0.964987 + 0.262298i \(0.0844804\pi\)
\(422\) 25.1765 8.18034i 1.22557 0.398213i
\(423\) 0 0
\(424\) 5.73607 4.16750i 0.278568 0.202392i
\(425\) −10.4661 + 30.6215i −0.507680 + 1.48536i
\(426\) 0 0
\(427\) 2.52265 3.47214i 0.122080 0.168028i
\(428\) 15.4164i 0.745180i
\(429\) 0 0
\(430\) −16.9443 + 8.47214i −0.817125 + 0.408563i
\(431\) 22.7984 + 16.5640i 1.09816 + 0.797859i 0.980758 0.195225i \(-0.0625438\pi\)
0.117401 + 0.993085i \(0.462544\pi\)
\(432\) 0 0
\(433\) 7.05342 2.29180i 0.338966 0.110137i −0.134588 0.990902i \(-0.542971\pi\)
0.473554 + 0.880765i \(0.342971\pi\)
\(434\) 1.00000 0.726543i 0.0480015 0.0348752i
\(435\) 0 0
\(436\) −1.70820 5.25731i −0.0818081 0.251780i
\(437\) 15.8904 + 5.16312i 0.760143 + 0.246985i
\(438\) 0 0
\(439\) 6.18034 0.294972 0.147486 0.989064i \(-0.452882\pi\)
0.147486 + 0.989064i \(0.452882\pi\)
\(440\) 7.17078 + 1.89207i 0.341854 + 0.0902008i
\(441\) 0 0
\(442\) 9.06154 12.4721i 0.431013 0.593239i
\(443\) 0.171513 + 0.0557281i 0.00814885 + 0.00264772i 0.313089 0.949724i \(-0.398636\pi\)
−0.304940 + 0.952372i \(0.598636\pi\)
\(444\) 0 0
\(445\) −11.7263 + 22.5885i −0.555878 + 1.07080i
\(446\) −15.4443 + 11.2209i −0.731307 + 0.531326i
\(447\) 0 0
\(448\) 0.587785 + 0.190983i 0.0277702 + 0.00902310i
\(449\) 16.8713 + 12.2577i 0.796207 + 0.578478i 0.909799 0.415049i \(-0.136236\pi\)
−0.113592 + 0.993527i \(0.536236\pi\)
\(450\) 0 0
\(451\) 2.00000 0.449028i 0.0941763 0.0211439i
\(452\) 9.41641i 0.442911i
\(453\) 0 0
\(454\) 3.70820 11.4127i 0.174035 0.535624i
\(455\) 2.30991 + 2.34525i 0.108290 + 0.109947i
\(456\) 0 0
\(457\) 4.80828 + 6.61803i 0.224922 + 0.309579i 0.906532 0.422137i \(-0.138720\pi\)
−0.681610 + 0.731716i \(0.738720\pi\)
\(458\) 6.88191 2.23607i 0.321571 0.104485i
\(459\) 0 0
\(460\) 1.69276 10.1865i 0.0789252 0.474950i
\(461\) 9.70820 0.452156 0.226078 0.974109i \(-0.427410\pi\)
0.226078 + 0.974109i \(0.427410\pi\)
\(462\) 0 0
\(463\) 1.32624i 0.0616355i 0.999525 + 0.0308178i \(0.00981115\pi\)
−0.999525 + 0.0308178i \(0.990189\pi\)
\(464\) −3.61803 2.62866i −0.167963 0.122032i
\(465\) 0 0
\(466\) 5.90983 + 18.1886i 0.273768 + 0.842570i
\(467\) 10.9637 + 15.0902i 0.507337 + 0.698290i 0.983467 0.181085i \(-0.0579609\pi\)
−0.476130 + 0.879375i \(0.657961\pi\)
\(468\) 0 0
\(469\) −1.76393 5.42882i −0.0814508 0.250680i
\(470\) −3.36025 22.3107i −0.154997 1.02911i
\(471\) 0 0
\(472\) 10.8541i 0.499601i
\(473\) −24.1724 + 14.3262i −1.11145 + 0.658721i
\(474\) 0 0
\(475\) 17.2877 5.32832i 0.793212 0.244480i
\(476\) −1.23607 + 3.80423i −0.0566551 + 0.174366i
\(477\) 0 0
\(478\) 4.25325 + 5.85410i 0.194539 + 0.267760i
\(479\) 22.0344 16.0090i 1.00678 0.731468i 0.0432482 0.999064i \(-0.486229\pi\)
0.963531 + 0.267596i \(0.0862294\pi\)
\(480\) 0 0
\(481\) 4.13525 12.7270i 0.188551 0.580302i
\(482\) 2.88593 3.97214i 0.131450 0.180926i
\(483\) 0 0
\(484\) 10.8090 + 2.04087i 0.491319 + 0.0927668i
\(485\) −9.23607 18.4721i −0.419388 0.838776i
\(486\) 0 0
\(487\) −38.9403 12.6525i −1.76455 0.573338i −0.766898 0.641769i \(-0.778201\pi\)
−0.997656 + 0.0684303i \(0.978201\pi\)
\(488\) 6.60440 2.14590i 0.298967 0.0971402i
\(489\) 0 0
\(490\) 13.1341 + 6.81822i 0.593337 + 0.308016i
\(491\) −8.11803 24.9847i −0.366362 1.12755i −0.949124 0.314903i \(-0.898028\pi\)
0.582762 0.812643i \(-0.301972\pi\)
\(492\) 0 0
\(493\) 17.0130 23.4164i 0.766228 1.05462i
\(494\) −8.61803 −0.387744
\(495\) 0 0
\(496\) 2.00000 0.0898027
\(497\) 0.726543 1.00000i 0.0325899 0.0448561i
\(498\) 0 0
\(499\) 0.100813 + 0.310271i 0.00451301 + 0.0138896i 0.953288 0.302064i \(-0.0976756\pi\)
−0.948775 + 0.315954i \(0.897676\pi\)
\(500\) −4.84760 10.0748i −0.216791 0.450557i
\(501\) 0 0
\(502\) −6.46564 + 2.10081i −0.288576 + 0.0937639i
\(503\) −11.7759 3.82624i −0.525064 0.170604i 0.0344785 0.999405i \(-0.489023\pi\)
−0.559542 + 0.828802i \(0.689023\pi\)
\(504\) 0 0
\(505\) 39.4164 19.7082i 1.75401 0.877004i
\(506\) 1.42705 15.2497i 0.0634402 0.677930i
\(507\) 0 0
\(508\) 1.67760 2.30902i 0.0744314 0.102446i
\(509\) −3.61803 + 11.1352i −0.160367 + 0.493557i −0.998665 0.0516541i \(-0.983551\pi\)
0.838298 + 0.545212i \(0.183551\pi\)
\(510\) 0 0
\(511\) −0.763932 + 0.555029i −0.0337944 + 0.0245530i
\(512\) 0.587785 + 0.809017i 0.0259767 + 0.0357538i
\(513\) 0 0
\(514\) 6.47214 19.9192i 0.285474 0.878598i
\(515\) 2.51240 15.1189i 0.110709 0.666219i
\(516\) 0 0
\(517\) −7.33094 32.6525i −0.322414 1.43605i
\(518\) 3.47214i 0.152557i
\(519\) 0 0
\(520\) 0.793248 + 5.26684i 0.0347862 + 0.230966i
\(521\) 9.60739 + 29.5685i 0.420907 + 1.29542i 0.906859 + 0.421434i \(0.138473\pi\)
−0.485952 + 0.873986i \(0.661527\pi\)
\(522\) 0 0
\(523\) −0.661030 0.909830i −0.0289048 0.0397841i 0.794320 0.607500i \(-0.207827\pi\)
−0.823225 + 0.567716i \(0.807827\pi\)
\(524\) −2.47214 7.60845i −0.107996 0.332377i
\(525\) 0 0
\(526\) 4.16312 + 3.02468i 0.181521 + 0.131882i
\(527\) 12.9443i 0.563861i
\(528\) 0 0
\(529\) 1.67376 0.0727723
\(530\) −15.6396 2.59893i −0.679342 0.112890i
\(531\) 0 0
\(532\) 2.12663 0.690983i 0.0922010 0.0299579i
\(533\) 0.865300 + 1.19098i 0.0374803 + 0.0515872i
\(534\) 0 0
\(535\) −24.5598 + 24.1897i −1.06181 + 1.04581i
\(536\) 2.85410 8.78402i 0.123278 0.379412i
\(537\) 0 0
\(538\) 22.3607i 0.964037i
\(539\) 20.1525 + 8.69827i 0.868029 + 0.374661i
\(540\) 0 0
\(541\) −12.7984 9.29856i −0.550245 0.399776i 0.277631 0.960688i \(-0.410451\pi\)
−0.827876 + 0.560911i \(0.810451\pi\)
\(542\) 1.34708 + 0.437694i 0.0578622 + 0.0188006i
\(543\) 0 0
\(544\) −5.23607 + 3.80423i −0.224495 + 0.163105i
\(545\) −5.69507 + 10.9705i −0.243950 + 0.469926i
\(546\) 0 0
\(547\) −18.9151 6.14590i −0.808753 0.262780i −0.124683 0.992197i \(-0.539791\pi\)
−0.684069 + 0.729417i \(0.739791\pi\)
\(548\) 12.5882 17.3262i 0.537743 0.740140i
\(549\) 0 0
\(550\) −8.23736 14.3926i −0.351242 0.613701i
\(551\) −16.1803 −0.689306
\(552\) 0 0
\(553\) −3.63271 1.18034i −0.154479 0.0501932i
\(554\) 0.0106431 + 0.0327561i 0.000452183 + 0.00139168i
\(555\) 0 0
\(556\) −0.263932 + 0.191758i −0.0111932 + 0.00813234i
\(557\) 10.0453 3.26393i 0.425635 0.138297i −0.0883634 0.996088i \(-0.528164\pi\)
0.513999 + 0.857791i \(0.328164\pi\)
\(558\) 0 0
\(559\) −16.3262 11.8617i −0.690526 0.501697i
\(560\) −0.618034 1.23607i −0.0261167 0.0522334i
\(561\) 0 0
\(562\) 9.05573i 0.381993i
\(563\) −26.8011 + 36.8885i −1.12953 + 1.55467i −0.340575 + 0.940217i \(0.610622\pi\)
−0.788956 + 0.614450i \(0.789378\pi\)
\(564\) 0 0
\(565\) 15.0012 14.7752i 0.631107 0.621597i
\(566\) 0.145898 0.106001i 0.00613255 0.00445556i
\(567\) 0 0
\(568\) 1.90211 0.618034i 0.0798109 0.0259321i
\(569\) 1.80902 5.56758i 0.0758379 0.233405i −0.905950 0.423384i \(-0.860842\pi\)
0.981788 + 0.189979i \(0.0608420\pi\)
\(570\) 0 0
\(571\) 44.6869 1.87009 0.935045 0.354530i \(-0.115359\pi\)
0.935045 + 0.354530i \(0.115359\pi\)
\(572\) 1.73060 + 7.70820i 0.0723600 + 0.322296i
\(573\) 0 0
\(574\) −0.309017 0.224514i −0.0128981 0.00937103i
\(575\) −18.8842 + 13.2869i −0.787527 + 0.554102i
\(576\) 0 0
\(577\) 10.3026 + 14.1803i 0.428904 + 0.590335i 0.967701 0.252100i \(-0.0811212\pi\)
−0.538797 + 0.842435i \(0.681121\pi\)
\(578\) −14.6291 20.1353i −0.608491 0.837516i
\(579\) 0 0
\(580\) 1.48932 + 9.88847i 0.0618407 + 0.410597i
\(581\) −5.09017 3.69822i −0.211176 0.153428i
\(582\) 0 0
\(583\) −23.4131 2.19098i −0.969673 0.0907412i
\(584\) −1.52786 −0.0632235
\(585\) 0 0
\(586\) 9.22542 28.3929i 0.381099 1.17290i
\(587\) 22.9969 7.47214i 0.949182 0.308408i 0.206799 0.978383i \(-0.433695\pi\)
0.742383 + 0.669975i \(0.233695\pi\)
\(588\) 0 0
\(589\) 5.85410 4.25325i 0.241214 0.175252i
\(590\) −17.2916 + 17.0311i −0.711885 + 0.701158i
\(591\) 0 0
\(592\) −3.30220 + 4.54508i −0.135719 + 0.186802i
\(593\) 6.11146i 0.250967i 0.992096 + 0.125484i \(0.0400483\pi\)
−0.992096 + 0.125484i \(0.959952\pi\)
\(594\) 0 0
\(595\) 8.00000 4.00000i 0.327968 0.163984i
\(596\) 17.5623 + 12.7598i 0.719380 + 0.522660i
\(597\) 0 0
\(598\) 10.4616 3.39919i 0.427808 0.139003i
\(599\) 5.00000 3.63271i 0.204294 0.148429i −0.480934 0.876757i \(-0.659702\pi\)
0.685228 + 0.728328i \(0.259702\pi\)
\(600\) 0 0
\(601\) 0.0278640 + 0.0857567i 0.00113660 + 0.00349809i 0.951623 0.307267i \(-0.0994146\pi\)
−0.950487 + 0.310766i \(0.899415\pi\)
\(602\) 4.97980 + 1.61803i 0.202961 + 0.0659461i
\(603\) 0 0
\(604\) −13.7082 −0.557779
\(605\) −13.7090 20.4221i −0.557351 0.830277i
\(606\) 0 0
\(607\) 19.7072 27.1246i 0.799890 1.10095i −0.192916 0.981215i \(-0.561794\pi\)
0.992805 0.119739i \(-0.0382057\pi\)
\(608\) 3.44095 + 1.11803i 0.139549 + 0.0453423i
\(609\) 0 0
\(610\) −13.7815 7.15433i −0.557997 0.289670i
\(611\) 19.4443 14.1271i 0.786631 0.571521i
\(612\) 0 0
\(613\) 5.70634 + 1.85410i 0.230477 + 0.0748865i 0.421979 0.906606i \(-0.361336\pi\)
−0.191502 + 0.981492i \(0.561336\pi\)
\(614\) −12.3262 8.95554i −0.497446 0.361416i
\(615\) 0 0
\(616\) −1.04508 1.76336i −0.0421077 0.0710476i
\(617\) 9.05573i 0.364570i −0.983246 0.182285i \(-0.941651\pi\)
0.983246 0.182285i \(-0.0583493\pi\)
\(618\) 0 0
\(619\) 2.29837 7.07367i 0.0923794 0.284315i −0.894182 0.447703i \(-0.852242\pi\)
0.986562 + 0.163388i \(0.0522423\pi\)
\(620\) −3.13818 3.18619i −0.126032 0.127961i
\(621\) 0 0
\(622\) 2.45714 + 3.38197i 0.0985224 + 0.135604i
\(623\) 6.69015 2.17376i 0.268035 0.0870899i
\(624\) 0 0
\(625\) −8.44373 + 23.5309i −0.337749 + 0.941236i
\(626\) 11.5279 0.460746
\(627\) 0 0
\(628\) 6.14590i 0.245248i
\(629\) −29.4164 21.3723i −1.17291 0.852168i
\(630\) 0 0
\(631\) 8.38197 + 25.7970i 0.333681 + 1.02696i 0.967368 + 0.253375i \(0.0815406\pi\)
−0.633687 + 0.773589i \(0.718459\pi\)
\(632\) −3.63271 5.00000i −0.144502 0.198889i
\(633\) 0 0
\(634\) −4.44427 13.6781i −0.176505 0.543225i
\(635\) −6.31079 + 0.950480i −0.250436 + 0.0377187i
\(636\) 0 0
\(637\) 15.7639i 0.624590i
\(638\) 3.24920 + 14.4721i 0.128637 + 0.572957i
\(639\) 0 0
\(640\) 0.366554 2.20582i 0.0144893 0.0871927i
\(641\) −9.50000 + 29.2380i −0.375227 + 1.15483i 0.568098 + 0.822961i \(0.307680\pi\)
−0.943325 + 0.331870i \(0.892320\pi\)
\(642\) 0 0
\(643\) 12.2452 + 16.8541i 0.482904 + 0.664661i 0.979060 0.203573i \(-0.0652554\pi\)
−0.496155 + 0.868234i \(0.665255\pi\)
\(644\) −2.30902 + 1.67760i −0.0909880 + 0.0661067i
\(645\) 0 0
\(646\) −7.23607 + 22.2703i −0.284699 + 0.876214i
\(647\) 16.3270 22.4721i 0.641879 0.883471i −0.356835 0.934167i \(-0.616144\pi\)
0.998714 + 0.0506966i \(0.0161442\pi\)
\(648\) 0 0
\(649\) −23.7812 + 27.0256i −0.933492 + 1.06085i
\(650\) 7.14590 9.52786i 0.280285 0.373714i
\(651\) 0 0
\(652\) −8.95554 2.90983i −0.350726 0.113958i
\(653\) 27.7849 9.02786i 1.08731 0.353288i 0.290102 0.956996i \(-0.406311\pi\)
0.797205 + 0.603708i \(0.206311\pi\)
\(654\) 0 0
\(655\) −8.24199 + 15.8767i −0.322041 + 0.620354i
\(656\) −0.190983 0.587785i −0.00745663 0.0229492i
\(657\) 0 0
\(658\) −3.66547 + 5.04508i −0.142895 + 0.196678i
\(659\) −11.3820 −0.443378 −0.221689 0.975117i \(-0.571157\pi\)
−0.221689 + 0.975117i \(0.571157\pi\)
\(660\) 0 0
\(661\) −5.88854 −0.229038 −0.114519 0.993421i \(-0.536533\pi\)
−0.114519 + 0.993421i \(0.536533\pi\)
\(662\) 3.57971 4.92705i 0.139129 0.191495i
\(663\) 0 0
\(664\) −3.14590 9.68208i −0.122085 0.375738i
\(665\) −4.43767 2.30371i −0.172086 0.0893339i
\(666\) 0 0
\(667\) 19.6417 6.38197i 0.760529 0.247111i
\(668\) 12.6740 + 4.11803i 0.490372 + 0.159332i
\(669\) 0 0
\(670\) −18.4721 + 9.23607i −0.713641 + 0.356820i
\(671\) −21.1459 9.12705i −0.816328 0.352346i
\(672\) 0 0
\(673\) 1.28157 1.76393i 0.0494010 0.0679946i −0.783602 0.621263i \(-0.786620\pi\)
0.833003 + 0.553269i \(0.186620\pi\)
\(674\) 0.562306 1.73060i 0.0216592 0.0666602i
\(675\) 0 0
\(676\) 5.92705 4.30625i 0.227963 0.165625i
\(677\) −9.68208 13.3262i −0.372113 0.512169i 0.581361 0.813646i \(-0.302520\pi\)
−0.953474 + 0.301477i \(0.902520\pi\)
\(678\) 0 0
\(679\) −1.76393 + 5.42882i −0.0676935 + 0.208339i
\(680\) 14.2764 + 2.37238i 0.547473 + 0.0909768i
\(681\) 0 0
\(682\) −4.97980 4.38197i −0.190686 0.167794i
\(683\) 15.5967i 0.596793i −0.954442 0.298396i \(-0.903548\pi\)
0.954442 0.298396i \(-0.0964518\pi\)
\(684\) 0 0
\(685\) −47.3545 + 7.13215i −1.80932 + 0.272505i
\(686\) −2.60081 8.00448i −0.0992995 0.305612i
\(687\) 0 0
\(688\) 4.97980 + 6.85410i 0.189853 + 0.261310i
\(689\) −5.21885 16.0620i −0.198822 0.611912i
\(690\) 0 0
\(691\) −31.6803 23.0171i −1.20518 0.875612i −0.210393 0.977617i \(-0.567474\pi\)
−0.994784 + 0.102005i \(0.967474\pi\)
\(692\) 1.85410i 0.0704824i
\(693\) 0 0
\(694\) 2.65248 0.100687
\(695\) 0.719622 + 0.119584i 0.0272968 + 0.00453607i
\(696\) 0 0
\(697\) 3.80423 1.23607i 0.144095 0.0468194i
\(698\) 4.25325 + 5.85410i 0.160988 + 0.221581i
\(699\) 0 0
\(700\) −0.999424 + 2.92409i −0.0377747 + 0.110520i
\(701\) 8.20163 25.2420i 0.309771 0.953378i −0.668082 0.744087i \(-0.732885\pi\)
0.977854 0.209290i \(-0.0671154\pi\)
\(702\) 0 0
\(703\) 20.3262i 0.766619i
\(704\) 0.309017 3.30220i 0.0116465 0.124456i
\(705\) 0 0
\(706\) 12.9443 + 9.40456i 0.487164 + 0.353945i
\(707\) −11.5842 3.76393i −0.435668 0.141557i
\(708\) 0 0
\(709\) −3.61803 + 2.62866i −0.135878 + 0.0987212i −0.653648 0.756799i \(-0.726762\pi\)
0.517770 + 0.855520i \(0.326762\pi\)
\(710\) −3.96917 2.06050i −0.148960 0.0773291i
\(711\) 0 0
\(712\) 10.8249 + 3.51722i 0.405680 + 0.131813i
\(713\) −5.42882 + 7.47214i −0.203311 + 0.279834i
\(714\) 0 0
\(715\) 9.56444 14.8519i 0.357690 0.555429i
\(716\) 9.27051 0.346455
\(717\) 0 0
\(718\) 30.7768 + 10.0000i 1.14858 + 0.373197i
\(719\) 6.05573 + 18.6376i 0.225841 + 0.695066i 0.998205 + 0.0598864i \(0.0190738\pi\)
−0.772365 + 0.635179i \(0.780926\pi\)
\(720\) 0 0
\(721\) −3.42705 + 2.48990i −0.127630 + 0.0927287i
\(722\) −5.62058 + 1.82624i −0.209176 + 0.0679655i
\(723\) 0 0
\(724\) 16.0902 + 11.6902i 0.597986 + 0.434463i
\(725\) 13.4164 17.8885i 0.498273 0.664364i
\(726\) 0 0
\(727\) 31.7426i 1.17727i 0.808399 + 0.588635i \(0.200334\pi\)
−0.808399 + 0.588635i \(0.799666\pi\)
\(728\) 0.865300 1.19098i 0.0320701 0.0441408i
\(729\) 0 0
\(730\) 2.39736 + 2.43403i 0.0887302 + 0.0900876i
\(731\) −44.3607 + 32.2299i −1.64074 + 1.19207i
\(732\) 0 0
\(733\) −8.95554 + 2.90983i −0.330780 + 0.107477i −0.469699 0.882827i \(-0.655637\pi\)
0.138918 + 0.990304i \(0.455637\pi\)
\(734\) −9.23607 + 28.4257i −0.340909 + 1.04921i
\(735\) 0 0
\(736\) −4.61803 −0.170223
\(737\) −26.3521 + 15.6180i −0.970691 + 0.575298i
\(738\) 0 0
\(739\) 6.97214 + 5.06555i 0.256474 + 0.186339i 0.708591 0.705619i \(-0.249331\pi\)
−0.452117 + 0.891959i \(0.649331\pi\)
\(740\) 12.4222 1.87093i 0.456649 0.0687768i
\(741\) 0 0
\(742\) 2.57565 + 3.54508i 0.0945553 + 0.130144i
\(743\) 9.21281 + 12.6803i 0.337985 + 0.465197i 0.943852 0.330370i \(-0.107173\pi\)
−0.605867 + 0.795566i \(0.707173\pi\)
\(744\) 0 0
\(745\) −7.22932 47.9997i −0.264862 1.75857i
\(746\) 5.30902 + 3.85723i 0.194377 + 0.141223i
\(747\) 0 0
\(748\) 21.3723 + 2.00000i 0.781448 + 0.0731272i
\(749\) 9.52786 0.348141
\(750\) 0 0
\(751\) −7.14590 + 21.9928i −0.260758 + 0.802529i 0.731883 + 0.681430i \(0.238642\pi\)
−0.992640 + 0.121099i \(0.961358\pi\)
\(752\) −9.59632 + 3.11803i −0.349942 + 0.113703i
\(753\) 0 0
\(754\) −8.61803 + 6.26137i −0.313850 + 0.228026i
\(755\) 21.5094 + 21.8385i 0.782808 + 0.794784i
\(756\) 0 0
\(757\) −4.54328 + 6.25329i −0.165128 + 0.227280i −0.883560 0.468318i \(-0.844860\pi\)
0.718432 + 0.695597i \(0.244860\pi\)
\(758\) 32.0344i 1.16354i
\(759\) 0 0
\(760\) −3.61803 7.23607i −0.131240 0.262480i
\(761\) −8.38197 6.08985i −0.303846 0.220757i 0.425405 0.905003i \(-0.360132\pi\)
−0.729251 + 0.684246i \(0.760132\pi\)
\(762\) 0 0
\(763\) 3.24920 1.05573i 0.117629 0.0382199i
\(764\) 7.32624 5.32282i 0.265054 0.192573i
\(765\) 0 0
\(766\) 6.86475 + 21.1275i 0.248033 + 0.763368i
\(767\) −24.5887 7.98936i −0.887847 0.288479i
\(768\) 0 0
\(769\) 37.0344 1.33550 0.667748 0.744387i \(-0.267258\pi\)
0.667748 + 0.744387i \(0.267258\pi\)
\(770\) −1.16936 + 4.43179i −0.0421409 + 0.159710i
\(771\) 0 0
\(772\) −7.77997 + 10.7082i −0.280007 + 0.385397i
\(773\) 37.5200 + 12.1910i 1.34950 + 0.438479i 0.892524 0.451000i \(-0.148932\pi\)
0.456976 + 0.889479i \(0.348932\pi\)
\(774\) 0 0
\(775\) −0.151820 + 9.99885i −0.00545353 + 0.359169i
\(776\) −7.47214 + 5.42882i −0.268234 + 0.194883i
\(777\) 0 0
\(778\) −23.8949 7.76393i −0.856675 0.278350i
\(779\) −1.80902 1.31433i −0.0648148 0.0470907i
\(780\) 0 0
\(781\) −6.09017 2.62866i −0.217923 0.0940607i
\(782\) 29.8885i 1.06881i
\(783\) 0 0
\(784\) 2.04508 6.29412i 0.0730387 0.224790i
\(785\) 9.79101 9.64347i 0.349456 0.344190i
\(786\) 0 0
\(787\) −10.9637 15.0902i −0.390812 0.537906i 0.567596 0.823307i \(-0.307873\pi\)
−0.958408 + 0.285400i \(0.907873\pi\)
\(788\) −24.9317 + 8.10081i −0.888156 + 0.288580i
\(789\) 0 0
\(790\) −2.26543 + 13.6327i −0.0806002 + 0.485030i
\(791\) −5.81966 −0.206923
\(792\) 0 0
\(793\) 16.5410i 0.587389i
\(794\) 9.97214 + 7.24518i 0.353898 + 0.257122i
\(795\) 0 0
\(796\) −1.70820 5.25731i −0.0605457 0.186340i
\(797\) −3.30220 4.54508i −0.116970 0.160995i 0.746517 0.665366i \(-0.231724\pi\)
−0.863487 + 0.504371i \(0.831724\pi\)
\(798\) 0 0
\(799\) −20.1803 62.1087i −0.713929 2.19725i
\(800\) −4.08924 + 2.87718i −0.144576 + 0.101724i
\(801\) 0 0
\(802\) 0.0901699i 0.00318401i
\(803\) 3.80423 + 3.34752i 0.134248 + 0.118132i
\(804\) 0 0
\(805\) 6.29563 + 1.04618i 0.221892 + 0.0368730i
\(806\) 1.47214 4.53077i 0.0518538 0.159590i
\(807\) 0 0
\(808\) −11.5842 15.9443i −0.407530 0.560918i
\(809\) 2.07295 1.50609i 0.0728810 0.0529512i −0.550748 0.834671i \(-0.685658\pi\)
0.623629 + 0.781720i \(0.285658\pi\)
\(810\) 0 0
\(811\) −13.0238 + 40.0831i −0.457327 + 1.40751i 0.411053 + 0.911611i \(0.365161\pi\)
−0.868381 + 0.495898i \(0.834839\pi\)
\(812\) 1.62460 2.23607i 0.0570122 0.0784706i
\(813\) 0 0
\(814\) 18.1803 4.08174i 0.637221 0.143065i
\(815\) 9.41641 + 18.8328i 0.329842 + 0.659685i
\(816\) 0 0
\(817\) 29.1522 + 9.47214i 1.01991 + 0.331388i
\(818\) −24.7072 + 8.02786i −0.863868 + 0.280688i
\(819\) 0 0
\(820\) −0.636729 + 1.22654i −0.0222355 + 0.0428327i
\(821\) −0.819660 2.52265i −0.0286063 0.0880412i 0.935734 0.352706i \(-0.114739\pi\)
−0.964340 + 0.264665i \(0.914739\pi\)
\(822\) 0 0
\(823\) 3.79171 5.21885i 0.132171 0.181918i −0.737802 0.675017i \(-0.764136\pi\)
0.869973 + 0.493100i \(0.164136\pi\)
\(824\) −6.85410 −0.238774
\(825\) 0 0
\(826\) 6.70820 0.233408
\(827\) 5.19180 7.14590i 0.180537 0.248487i −0.709152 0.705056i \(-0.750922\pi\)
0.889688 + 0.456569i \(0.150922\pi\)
\(828\) 0 0
\(829\) 7.88854 + 24.2784i 0.273980 + 0.843225i 0.989487 + 0.144619i \(0.0461958\pi\)
−0.715507 + 0.698606i \(0.753804\pi\)
\(830\) −10.4883 + 20.2038i −0.364054 + 0.701283i
\(831\) 0 0
\(832\) 2.26538 0.736068i 0.0785381 0.0255186i
\(833\) 40.7364 + 13.2361i 1.41143 + 0.458603i
\(834\) 0 0
\(835\) −13.3262 26.6525i −0.461173 0.922347i
\(836\) −6.11803 10.3229i −0.211597 0.357024i
\(837\) 0 0
\(838\) −21.1478 + 29.1074i −0.730537 + 1.00550i
\(839\) −2.23607 + 6.88191i −0.0771976 + 0.237590i −0.982207 0.187802i \(-0.939864\pi\)
0.905009 + 0.425392i \(0.139864\pi\)
\(840\) 0 0
\(841\) 7.28115 5.29007i 0.251074 0.182416i
\(842\) 1.17557 + 1.61803i 0.0405128 + 0.0557611i
\(843\) 0 0
\(844\) −8.18034 + 25.1765i −0.281579 + 0.866611i
\(845\) −16.1604 2.68546i −0.555933 0.0923826i
\(846\) 0 0
\(847\) −1.26133 + 6.68034i −0.0433397 + 0.229539i
\(848\) 7.09017i 0.243477i
\(849\) 0 0
\(850\) −18.6215 26.4661i −0.638711 0.907780i
\(851\) −8.01722 24.6745i −0.274827 0.845830i
\(852\) 0 0
\(853\) −3.09793 4.26393i −0.106071 0.145994i 0.752682 0.658385i \(-0.228760\pi\)
−0.858753 + 0.512391i \(0.828760\pi\)
\(854\) 1.32624 + 4.08174i 0.0453829 + 0.139674i
\(855\) 0 0
\(856\) 12.4721 + 9.06154i 0.426289 + 0.309717i
\(857\) 8.18034i 0.279435i 0.990191 + 0.139718i \(0.0446195\pi\)
−0.990191 + 0.139718i \(0.955381\pi\)
\(858\) 0 0
\(859\) −8.61803 −0.294044 −0.147022 0.989133i \(-0.546969\pi\)
−0.147022 + 0.989133i \(0.546969\pi\)
\(860\) 3.10549 18.6880i 0.105896 0.637256i
\(861\) 0 0
\(862\) −26.8011 + 8.70820i −0.912849 + 0.296603i
\(863\) 13.5393 + 18.6353i 0.460883 + 0.634351i 0.974692 0.223554i \(-0.0717658\pi\)
−0.513808 + 0.857905i \(0.671766\pi\)
\(864\) 0 0
\(865\) 2.95376 2.90925i 0.100431 0.0989176i
\(866\) −2.29180 + 7.05342i −0.0778784 + 0.239685i
\(867\) 0 0
\(868\) 1.23607i 0.0419549i
\(869\) −1.90983 + 20.4087i −0.0647865 + 0.692318i
\(870\) 0 0
\(871\) −17.7984 12.9313i −0.603075 0.438160i
\(872\) 5.25731 + 1.70820i 0.178035 + 0.0578471i
\(873\) 0 0
\(874\) −13.5172 + 9.82084i −0.457227 + 0.332195i
\(875\) 6.22654 2.99598i 0.210496 0.101283i
\(876\) 0 0
\(877\) 49.3287 + 16.0279i 1.66571 + 0.541223i 0.982057 0.188583i \(-0.0603896\pi\)
0.683654 + 0.729806i \(0.260390\pi\)
\(878\) −3.63271 + 5.00000i −0.122598 + 0.168742i
\(879\) 0 0
\(880\) −5.74559 + 4.68915i −0.193684 + 0.158071i
\(881\) −6.79837 −0.229043 −0.114522 0.993421i \(-0.536533\pi\)
−0.114522 + 0.993421i \(0.536533\pi\)
\(882\) 0 0
\(883\) 13.5923 + 4.41641i 0.457418 + 0.148624i 0.528657 0.848835i \(-0.322696\pi\)
−0.0712400 + 0.997459i \(0.522696\pi\)
\(884\) 4.76393 + 14.6619i 0.160228 + 0.493132i
\(885\) 0 0
\(886\) −0.145898 + 0.106001i −0.00490154 + 0.00356118i
\(887\) −37.2425 + 12.1008i −1.25048 + 0.406306i −0.858093 0.513495i \(-0.828351\pi\)
−0.392387 + 0.919800i \(0.628351\pi\)
\(888\) 0 0
\(889\) 1.42705 + 1.03681i 0.0478618 + 0.0347736i
\(890\) −11.3820 22.7639i −0.381524 0.763049i
\(891\) 0 0
\(892\) 19.0902i 0.639186i
\(893\) −21.4580 + 29.5344i −0.718066 + 0.988332i
\(894\) 0 0
\(895\) −14.5463 14.7688i −0.486228 0.493667i
\(896\) −0.500000 + 0.363271i −0.0167038 + 0.0121360i
\(897\) 0 0
\(898\) −19.8334 + 6.44427i −0.661850 + 0.215048i
\(899\) 2.76393 8.50651i 0.0921823 0.283708i
\(900\) 0 0
\(901\) −45.8885 −1.52877
\(902\) −0.812299 + 1.88197i −0.0270466 + 0.0626626i
\(903\) 0 0
\(904\) −7.61803 5.53483i −0.253372 0.184086i
\(905\) −6.62333 43.9762i −0.220167 1.46182i
\(906\) 0 0
\(907\) 17.3310 + 23.8541i 0.575467 + 0.792062i 0.993189 0.116512i \(-0.0371715\pi\)
−0.417722 + 0.908575i \(0.637171\pi\)
\(908\) 7.05342 + 9.70820i 0.234076 + 0.322178i
\(909\) 0 0
\(910\) −3.25508 + 0.490254i −0.107905 + 0.0162518i
\(911\) −19.5623 14.2128i −0.648128 0.470893i 0.214505 0.976723i \(-0.431186\pi\)
−0.862633 + 0.505830i \(0.831186\pi\)
\(912\) 0 0
\(913\) −13.3803 + 31.0000i −0.442823 + 1.02595i
\(914\) −8.18034 −0.270582
\(915\) 0 0
\(916\) −2.23607 + 6.88191i −0.0738818 + 0.227385i
\(917\) 4.70228 1.52786i 0.155283 0.0504545i
\(918\) 0 0
\(919\) 8.09017 5.87785i 0.266870 0.193892i −0.446300 0.894883i \(-0.647259\pi\)
0.713170 + 0.700991i \(0.247259\pi\)
\(920\) 7.24611 + 7.35697i 0.238897 + 0.242552i
\(921\) 0 0
\(922\) −5.70634 + 7.85410i −0.187928 + 0.258661i
\(923\) 4.76393i 0.156807i
\(924\) 0 0
\(925\) −22.4721 16.8541i −0.738879 0.554159i
\(926\) −1.07295 0.779543i −0.0352593 0.0256174i
\(927\) 0 0
\(928\) 4.25325 1.38197i 0.139620 0.0453653i
\(929\) 5.26393 3.82447i 0.172704 0.125477i −0.498075 0.867134i \(-0.665960\pi\)
0.670779 + 0.741657i \(0.265960\pi\)
\(930\) 0 0
\(931\) −7.39919 22.7724i −0.242499 0.746334i
\(932\) −18.1886 5.90983i −0.595787 0.193583i
\(933\) 0 0
\(934\) −18.6525 −0.610328
\(935\) −30.3488 37.1863i −0.992513 1.21612i
\(936\) 0 0
\(937\) −31.3319 + 43.1246i −1.02357 + 1.40882i −0.113895 + 0.993493i \(0.536333\pi\)
−0.909672 + 0.415327i \(0.863667\pi\)
\(938\) 5.42882 + 1.76393i 0.177257 + 0.0575944i
\(939\) 0 0
\(940\) 20.0248 + 10.3954i 0.653138 + 0.339060i
\(941\) 16.0902 11.6902i 0.524525 0.381089i −0.293781 0.955873i \(-0.594914\pi\)
0.818306 + 0.574783i \(0.194914\pi\)
\(942\) 0 0
\(943\) 2.71441 + 0.881966i 0.0883934 + 0.0287208i
\(944\) 8.78115 + 6.37988i 0.285802 + 0.207647i
\(945\) 0 0
\(946\) 2.61803 27.9767i 0.0851196 0.909600i
\(947\) 28.0000i 0.909878i −0.890523 0.454939i \(-0.849661\pi\)
0.890523 0.454939i \(-0.150339\pi\)
\(948\) 0 0
\(949\) −1.12461 + 3.46120i −0.0365064 + 0.112355i
\(950\) −5.85073 + 17.1179i −0.189823 + 0.555379i
\(951\) 0 0
\(952\) −2.35114 3.23607i −0.0762009 0.104882i
\(953\) −6.43288 + 2.09017i −0.208381 + 0.0677072i −0.411348 0.911478i \(-0.634942\pi\)
0.202966 + 0.979186i \(0.434942\pi\)
\(954\) 0 0
\(955\) −19.9753 3.31941i −0.646386 0.107414i
\(956\) −7.23607 −0.234031
\(957\) 0 0
\(958\) 27.2361i 0.879957i
\(959\) 10.7082 + 7.77997i 0.345786 + 0.251228i
\(960\) 0 0
\(961\) −8.34346 25.6785i −0.269144 0.828340i
\(962\) 7.86572 + 10.8262i 0.253601 + 0.349052i
\(963\) 0 0
\(964\) 1.51722 + 4.66953i 0.0488664 + 0.150395i
\(965\) 29.2667 4.40791i 0.942127 0.141896i
\(966\) 0 0
\(967\) 44.5623i 1.43303i −0.697573 0.716514i \(-0.745737\pi\)
0.697573 0.716514i \(-0.254263\pi\)
\(968\) −8.00448 + 7.54508i −0.257274 + 0.242508i
\(969\) 0 0
\(970\) 20.3731 + 3.38551i 0.654141 + 0.108702i
\(971\) 10.8647 33.4382i 0.348666 1.07308i −0.610925 0.791688i \(-0.709202\pi\)
0.959592 0.281396i \(-0.0907975\pi\)
\(972\) 0 0
\(973\) −0.118513 0.163119i −0.00379935 0.00522935i
\(974\) 33.1246 24.0664i 1.06138 0.771138i
\(975\) 0 0
\(976\) −2.14590 + 6.60440i −0.0686885 + 0.211402i
\(977\) 5.19180 7.14590i 0.166100 0.228618i −0.717851 0.696197i \(-0.754874\pi\)
0.883951 + 0.467580i \(0.154874\pi\)
\(978\) 0 0
\(979\) −19.2467 32.4747i −0.615128 1.03790i
\(980\) −13.2361 + 6.61803i −0.422811 + 0.211405i
\(981\) 0 0
\(982\) 24.9847 + 8.11803i 0.797295 + 0.259057i
\(983\) −21.1275 + 6.86475i −0.673863 + 0.218951i −0.625907 0.779898i \(-0.715271\pi\)
−0.0479565 + 0.998849i \(0.515271\pi\)
\(984\) 0 0
\(985\) 52.0255 + 27.0077i 1.65767 + 0.860538i
\(986\) 8.94427 + 27.5276i 0.284844 + 0.876659i
\(987\) 0 0
\(988\) 5.06555 6.97214i 0.161157 0.221813i
\(989\) −39.1246 −1.24409
\(990\) 0 0
\(991\) 35.8197 1.13785 0.568925 0.822390i \(-0.307360\pi\)
0.568925 + 0.822390i \(0.307360\pi\)
\(992\) −1.17557 + 1.61803i −0.0373244 + 0.0513726i
\(993\) 0 0
\(994\) 0.381966 + 1.17557i 0.0121152 + 0.0372868i
\(995\) −5.69507 + 10.9705i −0.180546 + 0.347789i
\(996\) 0 0
\(997\) −25.6255 + 8.32624i −0.811569 + 0.263695i −0.685262 0.728297i \(-0.740312\pi\)
−0.126307 + 0.991991i \(0.540312\pi\)
\(998\) −0.310271 0.100813i −0.00982145 0.00319118i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 990.2.ba.b.829.1 8
3.2 odd 2 110.2.j.a.59.2 yes 8
5.4 even 2 inner 990.2.ba.b.829.2 8
11.3 even 5 inner 990.2.ba.b.289.2 8
12.11 even 2 880.2.cd.a.609.2 8
15.2 even 4 550.2.h.e.301.1 4
15.8 even 4 550.2.h.d.301.1 4
15.14 odd 2 110.2.j.a.59.1 8
33.5 odd 10 1210.2.b.f.969.3 4
33.14 odd 10 110.2.j.a.69.1 yes 8
33.17 even 10 1210.2.b.g.969.1 4
55.14 even 10 inner 990.2.ba.b.289.1 8
60.59 even 2 880.2.cd.a.609.1 8
132.47 even 10 880.2.cd.a.289.1 8
165.14 odd 10 110.2.j.a.69.2 yes 8
165.17 odd 20 6050.2.a.ct.1.1 2
165.38 even 20 6050.2.a.cl.1.2 2
165.47 even 20 550.2.h.e.201.1 4
165.83 odd 20 6050.2.a.bv.1.2 2
165.104 odd 10 1210.2.b.f.969.2 4
165.113 even 20 550.2.h.d.201.1 4
165.137 even 20 6050.2.a.ce.1.1 2
165.149 even 10 1210.2.b.g.969.4 4
660.179 even 10 880.2.cd.a.289.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.j.a.59.1 8 15.14 odd 2
110.2.j.a.59.2 yes 8 3.2 odd 2
110.2.j.a.69.1 yes 8 33.14 odd 10
110.2.j.a.69.2 yes 8 165.14 odd 10
550.2.h.d.201.1 4 165.113 even 20
550.2.h.d.301.1 4 15.8 even 4
550.2.h.e.201.1 4 165.47 even 20
550.2.h.e.301.1 4 15.2 even 4
880.2.cd.a.289.1 8 132.47 even 10
880.2.cd.a.289.2 8 660.179 even 10
880.2.cd.a.609.1 8 60.59 even 2
880.2.cd.a.609.2 8 12.11 even 2
990.2.ba.b.289.1 8 55.14 even 10 inner
990.2.ba.b.289.2 8 11.3 even 5 inner
990.2.ba.b.829.1 8 1.1 even 1 trivial
990.2.ba.b.829.2 8 5.4 even 2 inner
1210.2.b.f.969.2 4 165.104 odd 10
1210.2.b.f.969.3 4 33.5 odd 10
1210.2.b.g.969.1 4 33.17 even 10
1210.2.b.g.969.4 4 165.149 even 10
6050.2.a.bv.1.2 2 165.83 odd 20
6050.2.a.ce.1.1 2 165.137 even 20
6050.2.a.cl.1.2 2 165.38 even 20
6050.2.a.ct.1.1 2 165.17 odd 20